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1 
Extension of a Field 

Structure 

1.1. Introduction. 

1.2. Field. 

1.3. Extension of a Field. 

1.4. Minimal Polynomial. 

1.5. Factor Theorem. 

1.6. Splitting Field. 

1.7. Separable Polynomial. 

1.8. Check Your Progress. 

1.9. Summary. 

1.1. Introduction. In this chapter field theory is discussed in detail. The concept of minimal polynomial, 

degree of an extension and their relation is given. Further the results related to the order of a finite field 

and its multiplicative group are discussed.  

1.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Algebraic extension and transcendental extension. 

(ii) Minimal polynomials and degree of an extension. 

(iii) Splitting fields, separable and inseparable extensions. 

1.1.2. Keywords. Extension of a Field, Minimal Polynomial, Splitting Fields. 



2 Theory of Field Extensions 

1.2. Field. A non-empty set with two binary operations denoted as “+” and “*” is called a field if it is 

(i) abelian group w.r.t. “+” 

(ii) abelian group w.r.t. “*” 

(iii) “*” is distributive over “+”. 

1.3. Extension of a Field. Let K and F be any two fields and : F K   be a monomorphism. Then, 

 F F K  . Then,  ,K   is called an extension of field F. Since  F F  and  F  is a 

subfield of K, so we may regard F as a subfield of K. So, if K and F are two fields such that F is a 

subfield of K then K is called an extension of F and we denote it by \  or |  or IK K

F FK F . 

Note. (i) Every field is an extension of itself. 

(ii) Every field is an extension of its every subfield, for example, R is a field extension of Q and C is a 

field extension of R. 

Remark. Let |K F  be any extension. Then, F is a subfield of K. we define a mapping : xF K K   by 

setting 

  ,  for all ,k k F k K      . 

We observe that K becomes a vector space over F under this scalar multiplication. Thus, K must have a 

basis and dimension over F. 

1.3.1. Degree of an extension. The dimension of K as a vector space over F is called degree of |K F , 

that is, degree of |K F  = [K : F]. 

If [K : F] = n < , then we say that K is a finite extension of F of degree n  

and, if [K : F] =  , then we say that K is an infinite extension of F. 

Note. Every field is a vector space over itself. Therefore, deg |F F  = deg |K K  = 1. 

Also, we have [K : F] = 1 iff K = F and [K : F] > 1 iff K F .               [ F K ] 

1.3.2. Example. [C : R] = 2, because basis of vector space C over the field R is {1, i}, that is, every 

complex number can be generated by this set. Hence [C : R] = 2. 

1.3.3. Transcendental Number. A number (real or complex) is said to be transcendental if it does not 

satisfy any polynomial over rationals, for example, ,e .Note that every transcendental number is an 

irrational number but converse is not true. For example, 2  is an irrational number but it is not 

transcendental because it satisfies the polynomial x2-2. 

1.3.4. Algebraic Number. Let |K F  be any extension. If K   and   satisfies a polynomial over F, 

that is, f( ) = 0, where   2

0 1 2 ... ;  n

n if x x x x F          .Then,   is called algebraic over F. 

If  does not satisfy any polynomial over F, then  is called transcendental over F. For example,   is 

transcendental over set of rationals but   is not transcendental over set of reals. 

Note. Every element of F is always algebraic over F. 
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1.3.5. Example. |R Q  is an infinite extension of Q, OR, [R : Q] =  . 

Solution. We prove it by contradiction. Let, if possible, [R : Q] = n(finite). 

Then, any subset of R having atleast (n+1) elements is always linearly dependent. In particular,   is a 

real number and we can take the set {1,  ,  2,…, n} of n+1 elements. Then, there exists scalars 

0 1 2, , ,..., n Q      (not all zero) such that 

 2

0 1 2 ... 0n

n           

Thus,   satisfies the polynomial 2

0 1 2 ... n

nx x x       . So,   is not a transcendental number, 

which is a contradiction. 

Hence our supposition is wrong. Therefore, [R : Q] =  . 

1.3.6. Algebraic Extension. The extension |K F  is called algebraic extension if every element of K is 

algebraic over F. otherwise, |K F  is said to be transcendental extension if atleast one element is not 

algebraic over F. 

1.3.7. Theorem. Every finite extension is an algebraic extension. 

Proof. Let |K F  be any extension and let [K : F] = n(finite), that is, dim |K F  = n. 

Every element of F is obviously algebraic. Now, K   be any arbitrary element. Consider the elements 

1,  ,  2,…, n in K. 

Either all these elements are distinct, if not, then i j   for some i j . Thus, 0i j   . 

Consider the polynomial   [ ]i jf x x x F x    and   0i jf      . 

Thus,   satisfies   [ ]f x F x  and hence   is algebraic over F. 

If 1,  ,  2,…, n are all distinct, then these must be linearly dependent over F. so there exists 

0 1 2, , ,..., n F      (not all zero) such that 

 2

0 1 2 ... 0n

n           

Thus,   satisfies the polynomial   2

0 1 2 ... n

nf x x x x        . So,   is algebraic over F. 

Hence every finite extension is an algebraic extension. 

Remark. Converse of above theorem is not true, that is, every algebraic extension is not a finite 

extension. We shall give an example for this later on. 

1.3.8. Exercise. If an element   satisfies one polynomial over F, then it satisfies infinitely many 

polynomials over F. 

Proof. Let  satisfies   [ ]f x F x .Then   0f   . We define      h x f x g x  for any   [ ]g x F x . 

Then  also satisfies  h x . 
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1.4. Minimal Polynomial. If  p x  be a polynomial over F of smallest degree satisfied by  , then 

 p x  is called minimal polynomial of  . W.L.O.G., we can assume that leading co-efficient in  p x  

is 1, that is,  p x  is a monic polynomial. 

1.4.1. Lemma. If   [ ]p x F x  be a minimal polynomial of   and   [ ]f x F x  be any other 

polynomial such that   0f   , then    p x f x . 

Proof. Since F is a field so F[x] must be a unique factorization domain and so division algorithm hold in 

F[x]. therefore, there exists polynomial     and q x r x  such that        +f x p x q x r x  where 

either   0r x   or    deg degr x p x . 

Now,          0      + 0      0      [ ( ) 0]f p q r r p            

If   [ ]r x F x  is a non-zero polynomial, then it is a contradiction to minimality of p(x), since  

degr(x) < degp(x). So, we must have r(x) = 0. Thus,      f x p x q x . 

Hence    p x f x . 

1.4.2. Unique Factorization Domain. An integral domain R with unity is called unique factorization 

domain if 

(i) Every non-zero element in R is either a unit in R or can be written as a product of finite number 

of irreducible elements of R. 

(ii) The decomposition in (i) above is unique upto the order and the associates of irreducible 

elements. 

Remark. Let F be any field and F[x] be a ring of polynomials over F, then division algorithm hold in 

F[x]. 

1.4.3. Corollary. Minimal polynomial of an element is unique. 

Proof. Let p(x) and q(x) be two minimal polynomials of  . Since p(x) is a minimal polynomial of  , 

so    p x q x . Thus, 

    deg deg                     ---(1)p x q x  

Also, q(x) is a minimal polynomial of  , so    q x p x . Thus, 

    deg deg                     ---(2)q x p x  

By (1) and (2), degp(x) = degq(x). Hence 

              for some Fp x q x    

Now, p(x) and q(x) are both monic polynomials, so comparing the co-efficients of leading terms on both 

sides, we get 1  . Therefore, p(x) = q(x). 
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Remark. F iff deg ( ) 1,p x   where p(x) is minimal polynomial of  . In this case, ( )p x x   . 

1.4.4. Irreducible Polynomial. A polynomial   [ ]f x F x  is said to be irreducible over F if  

f(x) = g(x)h(x) for some polynomial    , [ ]g x h x F x  imply that either  deg 0g x   or 

 deg 0h x  . 

1.4.5. Proposition. Minimal polynomial of any element is irreducible over F. 

Proof. Let, if possible, minimal polynomial p(x) of F   is reducible over F. Then, we have  

p(x) = q(x)t(x) for some    , [ ]q x t x F x . 

Then,          0       either =0 or 0p q t q t         

which is not possible because        deg deg  and deg degq x p x t x p x   and p(x) is an irreducible 

polynomial. 

1.4.6. Definition. Let S be a subset of a field K, then the subfield 'K  of K is said to be generated by S if 

(i) 'S K  

(ii) For any subfield L of K, S L  implies 'K L  and we denote the subfield generated by S by 

<S>. Essentially the subfield generated by S is the intersection of all subfields of K which 

contains S. 

1.4.7. Definition. Let K be a field extension of F and S be any subset of K, then the subfield of K 

generated by F S  is said to be the subfield of K generated by S over F and this subfield is denoted by 

F(S). However, if S is a finite set and its members are 1 2, ,..., na a a , then we write 

 1 2( ) , ,..., nF S F a a a . Sometimes,  1 2, ,..., nF a a a  is also called adjunction of 1 2, ,..., na a a  over F. 

1.4.8. Definition. A field K is said to be finitely generated over F if there exists a finite number of 

elements 1 2, ,..., na a a  in K such that  1 2, ,..., nK F a a a . 

In particular, if K is generated by a single element ‘a’ over F, that is, K = F(a), then K is called a simple 

extension of F. 

1.4.9. Definition. Let |K F  be any field extension and let F[x] be the ring of polynomials over F. We 

define, 

  [ ] ( ) : ( ) [ ]F a f a f x F x   

Let ( ) [ ]f a F a  where   2

0 1 2 ... [ ]n

nf x x x x F x         . Clearly, 

  2

0 1 2 ... ( )n

nf a a a a F a          

Thus, [ ] ( )F a F a . 

Remark.  1 1 iff a F F a F  . 
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1.4.10. Theorem. Let |K F  be any field extension. Then, a K  is algebraic over F iff  ( ) :F a F  is 

finite, that is F(a) is a finite extension over F. Moreover,  ( ) :F a F n , where n is the degree of 

minimal polynomial of ‘a’ over F. 

Proof.Let  ( ) :F a F  is finite and let  ( ) :F a F n . Thus, dim ( )F F a n  

Now,Consider the elements 1, a, a2,…, an in F(a). 

These are (n+1) distinct elements of F(a), then these must be linearly dependent over F. so there exists 

0 1 2, , ,..., n F      (not all zero) such that 

 2

0 1 2 ... 0n

na a a         

Thus, a satisfies the polynomial   2

0 1 2 ... n

nf x x x x        . So, a is algebraic over F. 

Hence a is algebraic over F. 

Conversely, let a K  be algebraic over F. 

Let   [ ]p x F x  be the minimal polynomial of ‘a’ over F. Further, let  deg 1p x n  . 

We claim that [F(a) : F] = n. 

Let   2

0 1 2 ... ,  0n

n np x x x x           is the minimal polynomial of ‘a’ over F, so p(a) = 0 and, 

if   [ ]g x F x  is any polynomial such that g(a) = 0, then p(x)|g(x). 

Consider [ ]t F a . Then, t = f(a) for some   [ ]f x F x . 

If 0t  , then   0f a  , that is, f(x) is not satisfied by ‘a’. Thus,    |p x g x . 

Since p(x) is irreducible in F[x] and   [ ]f x F x such that    |p x f x . 

As F[x] is an Euclidean ring, so we get g.c.d.(p(x), f(x)) = 1. Therefore, there exists polynomials 

   , [ ]h x g x F x  such that 

        1 f x g x p x h x   

Put x = a,            1       1f a g a p a h a f a g a     

Now,      [ ]      [ ]       is invertibleg x F x g a F a f a    . 

We know that an integral domain in which every non-zero element is invertible is a field. Hence, F[a] is 

a field. 

But we know that [ ] ( )F a F a , where F(a) is the field of quotients of F[a]. Therefore, 

 F[a] = F(a). 

Let [ ] ( )      ( ) for some ( ) [ ]t F a F a t f a f x F x     . 
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Now, ( ) [ ]f x F x  and ( ) [ ]p x F x , so by division algorithm, we can write 

 f(x) = p(x)q(x) + r(x) where either r(x) = 0 or degr(x) < degp(x). 

So let   ' ' ' 2 ' 1

0 1 2 1... [ ]n

nr x x x x F x    

       

Note that we are saying nothing about ' ' ' '

0 1 2 1, , ,..., n    
 which enables us to take degree of r(x) is equal 

to (n-1). 

Then,           ' ' ' 2 ' 1

0 1 2 1... n

nt f a p a q a r a r a a a a    

          

Thus, t is a linear combination of 2 11, , ,..., na a a   over F. Thus, the set  2 11, , ,..., na a a   generates F(a). 

Let, if possible, the set  2 11, , ,..., na a a  is linearly dependent. 

Thus, there exists scalars 0 1 1, ,..., n F      (not all zero) such that 

 2 1

0 1 2 1... 0n

na a a    

      

That is, ‘a’ satisfies a polynomial of (n-1) degree, which is a contradiction to minimal polynomial. 

Hence  2 11, , ,..., na a a   is linearly dependent and so it is a basis for F(a) over F. 

Therefore,  ( ) :F a F n  . 

1.4.11. Theorem. Let /K F  be a finite extension of degree n and /L K  be a finite extension of degree 

m, then /L F  is a finite extension of degree mn, that is  

[L : F] = [L : K][K : F]. 

-OR- Prove that finite extension of a finite extension is also a finite extension. 

Proof. Given that /L K  be a finite extension such that [L : K] = m, that is dimK L m . 

Let  1 2, ,..., mx x x  be a basis of L over K. Now, given that /K F  is finite extension such that  

[K : F] = n, that is dimF K n . 

Let  1 2, ,..., ny y y  be a basis of K over F. 

Let L  . Then, 

 
1 1 2 2

1

... ,       
m

m m i i i

i

x x x x K     


       

Now, i K   and  1 2, ,..., ny y y  be a basis of K over F, so 

 
1 1 2 2

1

... ,       
n

i i i in n ij j ij

j

y y y y F     


       

Thus, 
1 1 1 ,

,        and ,
m m n

i i ij j i ij i j ij i j

i i j i j

x y x x y F x y L    
  

 
     

 
    . 
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Therefore,  1 1 1 2 1 2 1 2 2 2 1 2, ,..., , , ,..., ,..., , ,...,n n m m m nx y x y x y x y x y x y x y x y x y spans L over F and have mn 

elements in number. 

We claim that these mn elements are linearly independent over F. 

If 0  , then 

, 1 1 1

0
m n m

ij i j ij j i i i

i j i j i

x y y x x  
  

 
   

 
     

Since i K   and  1 2, ,..., mx x x  are L.I. over K. Thus, 0 for 1,2,...,i i m   . 

Again, since  1 2, ,..., ny y y  are L.I. over F. Thus, 0 for 1,2,...,ij j n   . 

Thus, 0 for 1,2,..., , 1,2,...,ij i m j n    . 

So  1 1 1 2 1 2 1 2 2 2 1 2, ,..., , , ,..., ,..., , ,...,n n m m m nx y x y x y x y x y x y x y x y x y is L.I. and hence it is basis for L over 

F. 

Therefore, [L : F] = [L : K][K : F] = mn. 

1.4.12. Proposition. If F E K   and a K  is algebraic over F, then 

    : :E a E F a F       . 

Proof. Let F E K   and a K  is algebraic over F. Thus, there exists a polynomial 

   2

0 1 2 ... [ ]n

nf x x x x F x          

such that   0f a  .  

Since   [ ]f x F x  and                     and ( ) 0F E F x E x f x E x f a      . 

If p(x) is the minimal polynomial of ‘a’ over F and p1(x) be minimal polynomial of ‘a’ over E, then 

   1 |p x p x , since p(x) may be reducible in E[x], that is 1deg ( ) deg ( )p x p x . 

Hence    : :E a E F a F       . 

Remark. Let /K F  be any field extension, then 

       

  

1 2 1 2 1 1 2 2 1

1 2 1

, ,..., , ,..., , ,..., ,

...

,..., ,

n n n n n n

n n

F a a a F a a a a F a a a a a

F a a a a

  



 





 

1.4.13. Theorem. Let /K F  be an algebraic extension and /L K  is also algebraic extension, then /L F  

is an algebraic extension. 

-OR- Prove that algebraic extension of an algebraic extension is also a algebraic extension. 
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Proof. To prove that /L F is algebraic extension, it is sufficient to show that every element of L is 

algebraic over F. Equivalently, we have to prove that if a L , then   :F a F     . 

Now, ‘a’ satisfies some polynomial f(x) over K[x], say   2

0 1 2 ... [ ]n

nf x x x x K x         , 

where  for 0i K i n    . 

Now, 0 1 2, , ,..., n     are elements of K and /K F  is an algebraic extension. Thus, each i  is algebraic 

over F. 

Consider the element 0 . Then, 0  is algebraic over F. Thus, 

      0 0 0 0:       : ,    where F F F F F F          

and we have 0F F K  . 

Now, 1 K   is algebraic over F. So by above remark, we have 

    0 1 0 1: :F F F F           

Put    0 1 1 1 0,  then :F F F F   . 

So, we have 0 1F F F K   . 

Now, consider  1 2 1F F  . Then, as discussed above, we have 

    2 1 1 2 1: :F F F F     . 

In general similarly, we choose  1i i iF F  , then  1:i iF F  . 

Then, by definition,  1n n nF F  , then  1:n nF F    . 

By construction, we get that 

       1 2 1 0 1 2 0 1 2, ... , ,..., , , ,...,n n n n n n n nF F F F F                . 

Now, by last theorem, we have 

       1 1 2 1 0 0: : : ... : :n n n n nF F F F F F F F F F   . 

Thus,  :nF F  is finite since all the numbers on R.H.S. are finite. 

Now, as 0 1 2, , ,..., n nF     , so   2

0 1 2 ... [ ]n

n nf x x x x F x          and since   0f a  . 

Thus, ‘a’ is algebraic over Fn. So  

  :  degree of minimal polynomial ' ' over n n nF a F a F     . 

Therefore,      :  : :n n n nF a F F a F F F         . 
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Thus, ( ) /nF a F is a finite extension. So ( )nF a is algebraic extension over F. In turn, ‘a’ is algebraic over 

F. 

Hence L is algebraic extension of F. 

1.4.14. Theorem. Let /K F  be any extension and let  :  is algebraic over S x K x F  . Then, S is a 

subfield of K containing F and S is the largest algebraic extension of F contained in K. 

Proof. Let F K  . Since  satisfies a polynomial  f x x    in F[x], so   is algebraic over F. 

Thus, S   and so F S . So, S is non-empty. 

Let ,a b S . We claim that a b S   and if 0b  , then 1ab S  . Since K is a field, therefore, trivially 

a b K   and if 0b  , then 1ab K  . 

Now, to prove that a b S   and if 0b  , then 1ab S   it is sufficient to show that a b  and 1ab  are 

algebraic over F. We have a S , that is, ‘a’ is algebraic over F. Thus, [ ( ) : ]F a F  . 

Put F(a) = F1, so 1[ : ]F F   . 

Also, b S , that is, ‘b’ is algebraic over F. Thus, [ ( ) : ]F b F  . 

Now, b is algebraic over F and 1F F K  . So, b is algebraic over F1 and 

 1 1[ ( ) : ] [ ( ) : ]F b F F b F    

Now, 1 1 1 1[ ( ) : ] [ ( ) : ][ : ]F b F F b F F F   . Thus, F1(b) is finite extension of F and, thus, F(a,b) is an 

algebraic extension of F, as F1(b) = F(a,b). Hence every element F(a,b) is algebraic over F. 

Since 
1, ( , )      ( , ) and ( , )a b F a b a b F a b ab F a b     . 

Thus, a-b and ab-1 are algebraic over F. 

So, 
1,a b ab S   and, therefore, S is a subfield of K containing F. Hence S is an algebraic extension of 

F. 

Let E be any other algebraic extension such that F E K  . Let    E K K     . Therefore,   is 

algebraic over F. Thus,     S E S   . 

So, S is the largest algebraic extension of F contained in K. 

1.4.15. Corollary. If /K F  is algebraic extension. Then, K = S. 

Proof. In above theorem, S is a subfield of K. Therefore, S K . 

Also, S is the largest algebraic extension of F and K is an algebraic extension of F. Therefore, K S . 

Hence S = K. 

Note. In above theorem, the field S is called algebraic closure of F in K.   
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1.4.16. Corollary. If /K F  be any extension and ,a b K  be algebraic over F. Then, 

1, ,  and ( 0)a b a b ab ab b    are also algebraic over F. 

Proof. If a and b are algebraic over F, then F(a,b) is algebraic extension of F. So, every element of 

F(a,b) is algebraic over F. This implies 
1, ,  and ( 0)a b a b ab ab b    are also algebraic over F. 

1.4.17 Eisenstein Criterion of Irreducibility. Let   2

0 1 2 ... n

nf x x x x        where 

, 0i nZ   . Let p be a prime number such that 2

0 1 1 0| , | ,..., | , |  and |n np p p p p       , then f(x) is 

irreducible over the rationals. 

1.4.18. Counter Example. Example to show that every algebraic extension need not be finite. 

Let C be the field of complex numbers and Q be the field of rationals. Then z C  is called an algebraic 

integer if it is algebraic over Q. 

Let  :  is algebraic integerE z C z  . 

Then, trivially Q E  and so E is a subfield of C containing Q such that /E Q  is algebraic extension. 

We claim that /E Q  is an infinite extension. 

Let, if possible, [ : ]E Q n  . 

Consider the polynomial f(x) = xn+1-p, where p is some prime. 

Then, by Eisenstein criterion of irreducibility, f(x) is irreducible over Q. Let   be any zero of the 

polynomial f(x). Then,   will be a complex number such that  f 0  . Thus, E  . 

Since f(x) = xn+1-p is irreducible monic polynomial satisfied by E  , therefore, f(x) is minimal 

polynomial of   over Q. So, 

[ ( ) : ] 1Q Q n    

Now, E   and Q E . So,  Q E  , since  Q   is the smallest field containing Q and  . 

Therefore, 

 [ ( ) : ] [ : ]         1Q Q E Q n n      

which is a contradiction. Thus, /E Q  is an infinite extension. 

1.5. Factor Theorem. Let /K F be any extension and   [ ]f x F x , then the element a K  is a root of 

polynomial f(x) iff ( ) | ( )x a f x  in K[x], that is, iff there exists some g(x) in K[x] such that f(x) = (x-

a)g(x). 

Proof. Let ( ) | ( )x a f x  in K[x]. Then, we have f(x) = (x-a)g(x) for some some g(x) in K[x]. Therefore, 

 f(a) = (a-a)g(a) = 0 

Thus, ‘a’ is a root of f(x). 
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Conversely, let ‘a’ be a root of f(x) where a K . 

Consider thepolynomial x-a in K[x]. 

Now,   [ ] [ ]f x F x K x  . Therefore, by division algorithm in K[x], there exists unique polynomials 

q(x) and r(x) in K[x] such that 

   ( ) ( ) ( )f x x a q x r x    

where either r(x) = 0 or degr(x) < deg(x-a) = 1, that is, r(x) = constant. 

But f(a) = 0, implies that r(a) = 0. Thus, r(x) = 0. 

Hence f(x) = (x-a)g(x). Therefore, ( ) | ( )x a f x  in K[x]. 

Note. We have earlier proved that if ‘a’ is algebraic over F, then F[a] = F(a). 

1.5.1. Theorem. Let /K F  be any extension and a K  is algebraic over F. Let ( ) [ ]p x F x  be the 

minimal polynomial of ‘a’. Then, 

 [ ] ( ) [ ] ( )F x p x F a F a    . 

Proof. Consider the rings F[x] and F[a]. We define the mapping : [ ] [ ]F x F a   by setting 

  ( ) ( )f x f a   

We claim that   is an onto ring homomorphism. 

Let ( ), ( ) [ ]f x g x F x . Then, 

     ( ) ( ) ( ) ( ) ( ) ( )f x g x f a g a f x g x        

and      ( ) ( ) ( ) ( ) ( ) ( )f x g x f a g a f x g x     

Thus,   is a ring homomorphism. 

Again, let [ ]F a , then ( )h a   for some ( ) [ ]h x F x . 

Then,  ( ) ( )h x h a   . 

Thus,   is onto. 

By Fundamental theorem of ring homomorphism 

 [ ] [ ]F x Ker F a   

Now, we claim that ( )Ker p x   . 

Let         0    ( ) 0    satisfies ( )f x Ker f x f a a f x       . 

   ( ) | ( )p x f x , since p(x) is minimal polynomial. 

   ( ) ( ) ( )f x p x q x  , for some ( ) [ ]q x F x . 
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   ( ) ( )f x p x   . 

   ( )Ker p x   . 

Again, let ( ) ( )f x p x  . 

   ( ) ( ) ( )f x p x q x  , for some ( ) [ ]q x F x . 

   ( ) ( ) ( )f a p a q a  . 

   ( ) 0f a  . 

      0    f x f x Ker      

   ( )p x Ker   . 

Thus, ( )Ker p x    and so 

 [ ] ( ) [ ]F x p x F a    

Since ‘a’ is algebraic over F, therefore, F[a] = F(a) and hence 

 [ ] ( ) [ ] ( )F x p x F a F a    . 

Note. In the above theorem, preimage of ‘a’ is x+f(x), where ( ) ( )f x p x  . 

Proof.      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x f x x p x q x x p x q x a p a q a a           . 

1.5.2. Conjugates. Let /K F  be any extension. Two algebraic elements ,a b K  are said to be 

conjugates over the field F if they have the same minimal polynomial, that is, we can say that all the 

roots of a minimal polynomial are conjugates of each other. 

1.5.3. Corollary. If ‘a’ and ‘b’ are two conjugate elements of K over F, where /K F  is an extension. 

Then, ( ) ( )F a F b . 

Proof. Let p(x) be the minimal polynomial of ‘a’ and ‘b’ both. Then by above theorem 

 [ ] ( ) [ ] and [ ] ( ) [ ]      [ ] [ ]F x p x F a F x p x F b F a F b         

1.5.4. Corollary . If ‘a’ and ‘b’ are any two conjugates over F, then there always exists an isomorphism 

: [ ] [ ]F a F b   such that ( )a b   and ( )    for all F  . 

Proof. Given that ‘a’ and ‘b’ are conjugates over F, therefore, they satisfy same minimal polynomial, 

say p(x), over F. Then, there exists an isomorphism 1 : ( ) [ ] ( )F a F x p x     given by 

1 1( ) ( )  and ( ) ( )p x a x p x           .                    …(1) 

Further, p(x) is also minimal polynomial for ‘b’, so there exists an isomorphism 

2 : ( ) [ ] ( )F b F x p x     given by 

2 2( ) ( )  and ( ) ( )p x b x p x           .                   …(2) 
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Consider 

1
1 2

( ) [ ] ( ) ( )F a F x p x F b
  

   . Take, 1

2 1   . Then, 

1 1

2 1 2( ) ( ) ( ( ) )a a x p x b           

and  1 1

2 1 2( ) ( ) ( ( ) )p x              . 

1.5.5. Definition. Let /K F  be any extension and ( ) [ ]f x F x  be a non-zero polynomial. Then, ‘a’ is 

said to be a root of f(x) of multiplicity 1m   if ( ) | ( )mx a f x  but 
1( ) | ( )mx a f x  . 

1.5.6. Proposition. Let ( ) [ ]p x F x  be an irreducible polynomial over F. Then, there always exists an 

extension E of F which contains atleast one root of p(x) and    : degE F n p x  . 

Proof. Let I = <p(x)> be an ideal of F[x]. Now, we know that a ring of polynomials over a field is a 

Euclidean domain and any ideal of Euclidean domain is maximal iff it is generated by some irreducible 

element. So, F[x] is a Euclidean domain and I = <p(x)> is a maximal ideal as p(x) is irreducible. 

Now, since every Euclidean domain possess unity, therefore, F[x] is a commutative ring with unity. We 

further know that if R is a commutative ring with unity and M is a maximal ideal of R, then R/M is a 

field. So, [ ] ( )F x p x   is a field. 

We claim that E is an extension of F. 

We define a mapping : F E   by setting 

 ( ) I       for all F  . 

Then, for 1 2, F   , we have 

    1 2 1 2 1 2 1 2( ) ( ) ( )I I I                     

and   1 2 1 2 1 2 1 2( ) ( ) ( )I I I                

Therefore,   is a homomorphism. 

Also, if 1 2 1 2 1 2( ) ( )        ( )I I I I p x                   

1 2 1 2 1 2 1 2    ( )     ( ) |     0    p x p x                   

Therefore,   is monomorphism. 

Thus, (E, ) is an extension of F. 

Let   2

0 1 2 ... ( )n

np x x x x I p x            

Consider the element x x I E   . Then, 

  2 2

0 1 2 0 1 2... ... ( )n n

n np x x x x x x x I p x I I                      

Thus, p(x) has a root x  in E. 
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We claim that 
2 11, , ,..., nx x x 

 form a basis of E over F. Let us consider a representation 

 

2 1

0 1 2 1

2 1

0 1 2 1

2 1

0 1 2 1

2 1

0 1 2 1

0 1 2 1

         1 ... 0,  identity of E

    ...

    ... ( )

    ( ) | ...

    ... 0     ( deg ( ) )

n

n

n

n

n

n

n

n

n

x x x

x x x I I

x x x I p x

p x x x x

p x n

   

   

   

   

   



















    

      

       

    

      

 

Thus, 
2 11, , ,..., nx x x 

  are linearly independent. 

Further, let [ ] ( )E F x p x     , then ( )f x I    for some ( ) [ ]f x F x . 

We can write f(x) = p(x)q(x) + r(x), where either r(x) = 0 or degr(x) < degp(x). 

Then, 

 

   

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

f x I p x q x r x I

p x q x I r x I I r x I r x I

     

        
. 

But degr(x) < n, therefore, 

 

2 1

0 1 2 1

2 1

0 1 2 1

2 1

0 1 2 1

( ) ...

(1 ) ( ) ( ) ... ( )

1 ...

n

n

n

n

n

n

r x I x x x I

I x I x I x I

x x x

    

   

   













       

        

    

 

Thus, 
2 1

1, , ,...,
n

x x x


generates E and so it is a basis for E. 

Hence we get [E : F] = n = degp(x). 

1.5.7. Theorem. Let ( ) [ ]f x F x  be any polynomial of degree 1n  , then no extension of F contains 

more than n roots of f(x). 

Proof. Given that ( ) [ ]f x F x  and degf(x) = n. 

If n = 1, then ( ) ,    , F, 0f x x        . 

Consider the element 
1 F   . Then,  1 0f    . Thus, 

1   is a root of f(x). 

Let K be any extension of F and let   be any root of f(x) in K, then 

   10    0    f              

So, any extension K of F contains the only root 
1   of f(x). Therefore, K cannot contain more than 

one root of the polynomial f(x). 

Since K was an arbitrary extension, so Theorem is true for n = 1. 

Let us assume that the result is true for all polynomials of degree less than degree of f(x) over any field. 
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Now, let E be any extension of F. If E does not contain any root of f(x), then result is trivially true. 

So, let E contain atleast one root of the polynomial f(x) say ‘a’. Then, we have to prove that E does not 

contain more than n roots. Since a E  and ‘a’ is a root of f(x). suppose the multiplicity of ‘a’ is m. 

Then, by definition, we can write 

 ( ) ( ) ( ),               ( ) [ ]mf x x a g x g x E x    

and ( ) | ( )mx a f x  but 
1( ) | ( )mx a f x  . 

Now, ( ) | ( )mx a f x , therefore, m n . 

Further, ( ) [ ]g x E x  and degg(x) = n-m < n. 

Therefore, by induction hypothesis, any extension of E does not contain more than n-m roots of g(x). So, 

/E E  being an extension of E cannot contain more than n-m roots of g(x). Now, any root of g(x) is also 

a root of f(x) and a root of f(x) other than ‘a’ is also a root of g(x). Hence f(x) cannot have more than  

(n-m)+m, that is, n roots in any extension of F. 

1.5.8. Theorem. Let ( ) [ ]f x F x  be any polynomial of degree n. Then, there exists an extension E of F 

containing all the roots of f(x) and [ : ] !E F n . 

Proof. We prove the result by induction on n. 

Given that ( ) [ ]f x F x  be a polynomial of degree n. 

If n = 1, then ( ) ,  0f x x     , with a root 
1  . Since 

1,     F F       . 

Hence F contains all the roots of the given polynomial with [ : ] 1 1!F F   . 

Thus, result is true for n = 1. 

Let n > 1 and suppose that result is true for any polynomial of degree less that n over any field. 

Then, ( ) [ ]f x F x  is either irreducible or f(x) has an irreducible factor over F. Now, let ( ) [ ]p x F x  be 

any irreducible factor of f(x). Then, deg ( ) deg ( )p x f x n  . 

Suppose that degp(x) = m. Then, ( ) [ ]p x F x  is irreducible polynomial over F with degp(x) = m. 

Therefore, there exists an extension 'E  of F containing atleast one root of p(x) and [ ' : ]E F m n  . 

Let   be a root of p(x) in 'E , then   is also a root of f(x). So, we get that ( ) [ ]f x F x  is a polynomial 

with root 'E   such that [ ' : ]E F m n  . Since 'E   is a root of f(x) so ( ) | ( )x f x  in '[ ]E x . 

Hence we can write ( ) ( ) ( )f x x g x   where ( ) '[ ]g x E x  and degg(x) = n-1. Now, ( ) '[ ]g x E x  and 

degg(x) = n-1 < n. 

Therefore, by induction hypothesis, there exists an extension E of 'E  such that E contains all the roots 

of g(x) and [ : '] 1!E E n  . 
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Since '     E E E      also. 

Therefore, E is an extension of F which contains all the roots of f(x). Then, we have 

[ : ] [ : '][ ' : ] 1!. ( 1)! !E F E E E F n m n n n      . 

1.5.9. Remark. Let R and 'R  be any rings and : 'R R   is an isomorphism onto. Consider the rings 

R[x] and '[ ]R t . Then,   can be extended to an isomorphism from R[x] to '[ ]R t . 

Proof. Let ( ) [ ]f x R x and 2

0 1 2( ) ... n

nf x x x x        . 

We define : [ ] '[ ]R x R t   by setting 

 2

0 1 2( ( )) ( ) ( ) ( ) ... ( ) n

nf x t t t              

We claim that   is an extension of  and is an isomorphism also. 

Let 2

0 1 2( ) ... [ ]m

mg x x x x R x         . Then, if k = max{m,n} 

2

0 0 1 1 2 2

0 0 1 1

( ( ) ( )) ( ) ( ) ( ) ... ( )

( ) ( ) [ ( ) ( )] ... [ ( ) ( )]

( ( )) ( ( ))

k

k k

k

k k

f x g x t t t

t t

f x g x

            

           

 

         

      

 

 

Similarly, we can show that 

 ( ( ) ( )) ( ( )) ( ( ))f x g x f x g x    

Therefore,   is a ring homomorphism. 

We claim that  is one-one. 

Let ( ) ker       ( ( )) 0,  identity of R[x]f x f x     

2

0 1 2   ( ) ( ) ( ) ... ( ) 0      ( ) 0   for all 0n

n it t t i n                    

Since   is a monomorphism, so 0   for all 0i i n    . 

Thus, ( ) 0      ker {0}f x     

Therefore,   is a monomorphism. 

We claim that   is onto. 

Let ' ' ' '

0 1'( ) '[ ] and '( ) ...   where 'n

n if t R t f t t t R         . 

Now, since : 'R R   is onto, therefore, there exists i R   such that '( )i i   . 

Consider 2

0 1 2( ) ... [ ]n

nf x x x x R x         and we have 

( ( )) '( )f x f t   

Therefore,   is onto. 
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Remark. If 2

0 1 2( ) ... n

nf x x x x        . Then, ' ' '

0 1'( ) ... n

nf t t t       where '( )i i    is called 

the corresponding polynomial of f(x) in '[ ]R t . 

Remark. ( ) [ ]f x R x  is irreducible iff '( ) '[ ]f t R t  is irreducible, where '( )f t  is corresponding 

polynomial of f(x). Also, if A is any ideal in R[x] then ( )A  is also an ideal of '[ ]R t . Further, A is 

maximal iff ( )A  is maximal. Also, we can find an isomorphism *  such that 

 *: [ ] '[ ]R x A R t A   given by 

 *( ( ) ) '( ) ( )f x A f t A    . 

1.5.10. Proposition. Let : 'F F   be an isomorphism onto. Let p(x) be any irreducible polynomial of 

degree n in F[x] and '( )p t  be corresponding polynomial in '( )F t . Let u be any root of p(x) and v be any 

root of '( )p t  in some extension of F and 'F  respectively. Then, there exists an isomorphism, say 

: ( ) '( )F u F v   which is onto and is such that ( ) ( )     for all F   and ( )u v  . 

Proof. Given that ( ) [ ]p x F x  is irreducible polynomial over F with root u which is in some extension 

of F. Then, we know that there exists an isomorphism onto, say 1 : [ ] ( ) ( )F x p x F u   given by 

 1( ( ) ( ) ) ( )f x p x f u      

and [F(u) : F] = degree of minimal polynomial of u over F. 

Since '( )p t  is irreducible polynomial over 'F andvis a root of '( )p t  in some extension of 'F , so there 

exists an isomorphism onto, say 2 : '[ ] '( ) '( )F t p t F v   given by 

 2 ( '( ) '( ) ) '( )g t p t g v      

Now, : 'F F   is given to be an isomorphism onto. By last remarks, we have   is also an extension 

of   from ( ) '( )F x F t  with ( ( )) '( )p x p t  and correspondingly, we denote the isomorphism for 

[ ] ( ) '[ ] '( )F x p x F t p t     by   again. Now, we have 

1

1 : ( ) [ ] ( )F u F x p x      

: [ ] ( ) '[ ] '( )F x p x F t p t      

2 : '[ ] '( ) '( )F t p t F v    

Consider 1

2 1 : ( ) '( )F u F v     . 

Now, 1

2 1,  and      are all isomorphism onto, therefore,   is also isomorphism onto. 

For F  , we have 

 1 1

2 1 2 1 2 2( ) ( ) ( ) ( ( ) ) ( ( ) '( ) ) ( )p x p t                             

Now, compute 

1

2 1 2 2( ) ( ) ( ( ) ) ( '( ) )u u x p x t p t v               . 
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1.6. Splitting Field. Let F be any field and ( ) [ ]f x F x  be any polynomial over F. An extension E of F 

is called a splitting field of f(x) over F if 

(i) f(x)is written as a product of linear factors over E. 

(ii) If 'E  is any other extension of F such that f(x) is written as product of linear factors over 'E , 

then 'E E . 

Remark. We have proved a theorem that for any polynomial ( ) [ ]f x F x , where degf(x) = n, there 

always exist an extension E of F such that E contains all the roots of f(x) and [ : ] !E F n . So, we can 

say that splitting field of a polynomial is always a finite extension. 

1.6.1. Another Form. Let ( ) [ ]f x F x  and let 1 2, ,..., n   be roots of f(x). Consider the extension 

 1 2, ,..., nK F    . By definition, K is the smallest extension of F containing 1 2, ,..., n   . Also, let E 

be the splitting field of F. 

Now, F E  and also 1 2, ,..., n E    , therefore, K E . 

Also, E K , since E is the splitting field. Therefore, 

  E = K. 

Thus, splitting field is always obtained by adjunction of all the roots of f(x) with F. Hence if 

( ) [ ]f x F x  is a polynomial of degree n and 1 2, ,..., n    are its roots, then splitting field is 

 1 2, ,..., nF    . 

1.6.2. Example. Let F be any field and K be its extension. Let a K  be algebraic over F of degree m 

and b K  be algebraic over F of degree n such that (m, n) = 1. Then,  [ , : ]F a b F mn . 

Solution. Let p(x) be minimal polynomial of ‘a’ over F. Then, 

 degp(x) = m = [F(a) : F]. 

Let q(x) be the minimal polynomial of ‘b’ over F. Then, 

 degq(x) = n = [F(b) : F]. 

Now, [F(a,b) : F] = [F(a,b) : F(a)][F(a) : F] = [F(a,b) : F(b)][F(b) : F]  …(*) 

Therefore, [ ( ) : ] | [ ( , ) : ]m F a F F a b F  and [ ( ) : ] | [ ( , ) : ]n F b F F a b F . 

Since ( , ) 1    | [ ( , ) : ]   [ ( , ) : ]m n mn F a b F F a b F mn        …(1) 

Now, ( , )a F a b  is algebraic over F with minimal polynomial p(x) of degree m. 

Since ( )      ( ) ( )[ ]F F b p x F b x   . Therefore, ‘a’ is algebraic over F(b). 

So, let t(x) be the minimal polynomial of ‘a’ over F(b). 

Now, ( ) 0    ( ) | ( )   deg ( ) deg ( )   deg ( )p a t x p x p x t x t x m      . 
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    [ ( , ) : ( )] [ ( )( ) : ( )] deg ( )F a b F b F b a F b t x m     

Then, by (*), 

   [ ( , ) : ] [ ( , ) : ( )][ ( ) : ]F a b F F a b F b F b F mn       …(1) 

By (1) and (2), we have 

 [ , : ]F a b F mn . 

1.6.3. Definition. A field F is said to be algebraically closed field if it has no algebraic extension. 

Thus, a field is called algebraically closed if f(x) has splitting field E, then E = F. For example, field of 

complex numbers is algebraically closed. 

1.6.4. Remark. Algebraically closed fields are always infinite. 

Proof. Let F be any algebraically closed field and, if possible, suppose that F is finite. Then,  

F = {a1,a2,…,an}. Consider the polynomial 

f(x) = (x-a1)(x-a2)…(x-an)+1 

in F, where 1 is unity of F. 

This polynomial has no roots in F. So, F cannot be algebraically closed. 

Hence our supposition is wrong and so F must be infinite. 

1.6.5. Example. Find the splitting field and its degree for the polynomial f(x) = x3 – 2 over Q. 

Solution. Let 
3 2 [ ]x Q x  . Then, 23 2, ,w w    are its roots. 

Let E be the splitting field of x3 – 2 over Q. Therefore, 
2, ,      w w E w E      . 

Thus, ( , )E Q w  

Consider [E : Q]. Here, E   and Q  . So, 

 [ : ] [ : ( )][ ( ) : ]E Q E Q Q Q 
 
 

Now, Q  , therefore, 

[ ( ) : ] degree of minimal polynomial of  over Q 3Q Q    

since x3 – 2 is monic and irreducible. 

Also, w E  and w Q . Therefore, 

 [Q(w) : Q] = 2 

since basis of Q(w) over Q is {1,w}. Also, 

[E : Q] = [E : Q(w)][Q(w) : Q] 

Since (2, 3) = 1, so we have [E : Q] = 6 = 3!. 
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1.6.6. Algebraic Number. A complex number is said to be an algebraic number if it is algebraic over 

the field of rational numbers. 

1.6.7. Algebraic Integer. An algebraic number is said to be an algebraic integer if it satisfies a monic 

polynomial over integers. 

Exercise. Find the splitting field and its degree over Q for the polynomials 

(a) f(x) = xp-1 

(b) f(x) = x4-1 

(c) f(x) = x2+3 

Exercise. Show that the polynomials x2+3 and x2+x+1 have same splitting field over Q. 

Exercise. Show that sinm0 is an algebraic integer for every integer m. 

Exercise. Show that 32 5  is algebraic over Q of degree 6. 

1.6.8. Example. If a K  is algebraic over F of odd degree show that F(a) = F(a2). 

Solution. Let K be an extension of F and a K  be algebraic of odd degree. Let p(x) be minimal 

polynomial of ‘a’. We can write 

 2 2 1

0 1 2 2 1( ) ... n n

n np x x x x    

      

Now, 
2 2( )      ( )      ( ) ( )a F a a F a F a F a        …(1) 

To prove 
2( ) ( )F a F a , it is sufficient to prove that 

2( )a F a . 

We are given that p(a) = 0, that is, 

2 2 1

0 1 2 2 1... 0n n

n na a a    

      

2 2 1 2 2 2

2 1 2 1 1 2 2 2 0   ( ... ) ... 0n n n n

n n n na a a a a      

            

2 2 2 2 2 2

2 1 2 1 1 2 2 2 0   ( ... ) ( ... )n n n n

n n n na a a a a      

            

   aX Y            …(2) 

where 2 2 2 2 2 2

2 1 2 1 1 2 2 2 0... ,  ...n n n n

n n n nX a a Y a a      

           in F(a2). 

Now, we prove that 0X  . 

If X = 0, then ‘a’ satisfies the polynomial 

 2 2 2

2 1 2 1 1...n n

n nx x  

     

which is of degree 2n < degp(x). 

But p(x) is minimal polynomial of ‘a’ which is a contradiction. Hence 0X  and so X-1 exists. By (2), 

 a = -YX-1 
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But 
2 2 1 2 2( ), ( )      -YX ( )      ( )X F a Y F a F a a F a      . 

Therefore, 
2( ) ( )                                                          ---(3)F a F a  

By (1) and (3), we have 

  
2( ) ( )F a F a  

Remark. Let F be a field of characteristic p and let f(x) = xp-1. 

Then,
1'( ) 0                 [ p.1 = 0]pf x px   . 

So, degree of '( )f x  depends upon the characteristic of field considered. 

Again, let F = {0, 1} be the given field and f(x) be a polynomial over F given by 

10 9( ) ... 1f x x x x      

Then, 
9 8 9 8 8 6'( ) 10 9 ... 2 1 0 ... 1 ... 1f x x x x x x x x              

So, deg '( ) 8f x  . 

1.6.9. Lemma.Let ( ) [ ]f x F x  be a non-constant polynomial. Then, an element   of field extension K 

of F is a multiple root of f(x) iff   is a common root of f(x) and '( )f x . 

Proof. Let   be a root of f(x) of multiplicity m > 1. Then, we can write 

 ( ) ( ) ( ),    ( ) [ ] and ( ) 0mf x x g x g x K x g      

 
1'( ) ( ) ( ) ( ) '( )m mf x m x g x x g x      

 
1'( ) ( ) ( ) ( ) '( ) 0m mf m g g            

Thus,   is a root '( )f x  also. 

Conversely, let   is a common root of f(x) and '( )f x . Then, we have to prove that   is a multiple root 

of f(x). 

Let, if possible,   is not a multiple root of f(x). 

Then, ( ) ( ) ( ),    ( ) [ ] and ( ) 0f x x g x g x K x g     . 

Therefore, '( ) ( ) ( ) '( )f x g x x g x    and so '( ) ( ) 0f g   , a contradiction. 

Hence    is a multiple root of f(x). 
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1.6.10. Lemma. Let ( ) [ ]f x F x  be irreducible polynomial over F, then f(x) has a multiple root in some 

extension of F iff '( ) 0f x   identically. 

Proof. Let ( ) [ ]f x F x  has a multiple root of multiplicity m > 1, in some extension K of F where f(x) is 

an irreducible polynomial over F. 

Let
0 1( ) ... [ ]n

nf x x x F x        be an irreducible polynomial of degree n. Let   be its multiple 

root of multiplicity m > 1. Then, by above lemma,  is also a root of '( )f x , that is, '( ) 0f   . But 

1

1 2'( ) 2 ... [ ]n

nf x x n x F x         and deg '( ) 1f x n  . 

W.L.O.G., we can assume that 1n   so that f(x) is monic and irreducible polynomial and hence is 

minimal polynomial of  . But   satisfies '( )f x . Therefore, ( ) | '( )f x f x . 

Thus, '( ) 0f x   identically, since deg '( ) deg ( )f x f x . 

Conversely, let '( ) 0f x   and K the splitting field of f(x) over F. Let deg ( )f x n . 

Let 1 2, ,..., n    be the roots of f(x) in K. We can write 

 1 2( ) ( )( )...( )  for some Fnf x x x x         . 

Then, we have 

2 1 3 1 2 1'( ) ( )...( ) ( )( )...( ) ... ( )( )...( )n n nf x x x x x x x x x                        

1 1 1   '( ) ( )...( )( )...( )i i i i i i i nf                  

Now, since '( ) 0f x   identically, so '( ) 0if   . But 0     for some i j i j      . 

Therefore, f(x) has multiple roots. 

1.6.11. Corollary. Let charF = 0 and f(x) be any irreducible polynomial over F, then f(x) cannot have 

multiple roots. 

Proof. Let degf(x) = n >1. 

Let 
0 1( ) ... [ ]n

nf x x x F x       . Here n > 1 and 0n  . 

1

1 2'( ) 2 ... n

nf x x n x        

Now, 0      '( ) 0      '( ) 0nn f f x       

Hence by above lemma, f(x) cannot have multiple roots. 

Remark. Any irreducible polynomial over field of rationals, field of reals or field of complex numbers 

cannot have multiple roots because all these fields are of characteristic zero. 

1.7. Separable polynomial. Let ( ) [ ]f x F x  be any polynomial of degree n > 1, then it is said to be 

separable over F if all its irreducible factors are separable. Otherwise f(x) is said to be inseparable. 
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1.7.1. Separable irreducible polynomial. An irreducible polynomial ( ) [ ]f x F x  of degree n is said to 

be separable over F if it has n distinct roots in its splitting field, that is, it has no multiple roots. 

1.7.2. Inseparable irreducible polynomial. An irreducible polynomial which is not separable over F is 

called inseparable over F. Equivalently, if ( ) [ ]f x F x  is irreducible polynomial having multiple roots 

of multiplicity n > 1 is called inseparable over F. 

Remark. By the corollary of above lemma, we conclude that inseparable implies . 0ch F   and ch.F = 0 

implies separable. But converse is not true, that is, if . 0ch F  , then the polynomial may be separable or 

inseparable. 

1.7.3. Lemma. Let . ( 0)ch F p  and ( ) [ ]f x F x  be an irreducible polynomial over F. Then, f(x) is 

inseparable iff ( ) [ ]pf x F x . 

Proof. Let f(x) be any irreducible polynomial over F of degree n and is separable. Let 

 
0 1( ) ... ,     0n

n nf x x x         

Therefore, 1

1 2'( ) 2 ... n

nf x x n x        

Since ( ) [ ]f x F x  is irreducible polynomial and is inseparable, so f(x) must have repeated roots. 

Therefore, 

1

1 2 1 2'( ) 0      2 ... 0      2 ... 0   ---(*)n

n nf x x n x n                 

Since i F   andch.F p > 0. Therefore, if 0      |  or if | , then 0i ik p k p k    . 

Therefore, by (*), we get 

 1 2 1... 0p        

and 0      p pp    may or may not be zero. 

Further, 1 1( 1) 0      0p pp       . So 

 1 2 2 1... 0p p p         

Again, 2 22 0      p pp    may or may not be zero and so on. Therefore, 

 
2

0 2( ) ...p p mp

p p mf x x x x         

where n = mp if 0m  . Thus, 

    
2

0 2( ) ... [ ]
m

p p p p

p p mf x x x x F x          

Conversely, if ( ) [ ]pf x F x . Then, 

 
2

0 2( ) ...p p kp

p p kf x x x x         

where 0 2, , ,...,p p k F     . 
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Then, 
1 2 1 1

2'( ) 0 2 ... 0       [ .   ]p p kp

p p kf x p x p x kp x ch F p           . 

Thus, f(x) has multiple roots and hence f(x) is inseparable. 

1.7.4. Separable Element. Let K be any extension of F. An algebraic element K   is said to be 

separable over F if the minimal polynomial of   is separable over F. 

1.7.5. Separable Extension. An algebraic extension K of F is called separable extension if every 

element of K is separable. 

1.7.6. Proposition. Prove that if ch.F = 0, then any algebraic extension of F is always separable 

extension. 

Proof. Given that ch.F = 0 and let K be any algebraic extension of F. Let K  . Then,   is algebraic 

over F. 

So, let p(x) be the minimal polynomial of   over F. Then, p(x) is irreducible polynomial over F and so 

p(x) is separable. 

Therefore,   is separable. But   was an arbitrary element of K. So, K is separable extension. 

1.7.7. Perfect Field. A field F is called perfect if all its finite extensions are separable. 

1.7.8. Theorem. Let K be an algebraic extension of F, where F is a perfect field then K is separable 

extension of F. 

Proof. Let a K . Since K is algebraic, so ‘a’ is algebraic over F. Therefore, 

 [F(a) : F] = degree of minimal polynomial of ‘a’ over F = r (say) 

Thus, F(a) is finite extension. But F is perfect, therefore, F(a) is separable extension. So, ‘a’ is separable 

over F. 

Hence K is separable. 

1.7.9. Theorem. Let ch.F = p > 0. Prove that the element ‘a’ in some extension of F is separable iff  

F(ap) = F(a). 

Proof. Let K be some extension of F such that a K  and ‘a’ is separable over F. So, ‘a’ is algebraic 

element with its minimal polynomial, say 

 1

0 1 1( ) ... n n

nf x x x x   

      

and f(x) has no multiple roots. 

Let g(x) be the polynomial 

 1

0 1 1( ) ...p p p n n

ng x x x x   

      

Then, 

   ( 1) 1

0 1 1 0 1 1( ) ... ... ( ) 0
p pp p p p p n p np n n

n ng a a a a a a a f a      
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Therefore, apsatisfies a polynomial ( ) [ ]g x F x . 

Now, ( )      ( )      ( ) ( )           ---(1)p pa F a a F a F a F a      

Further, F(ap) and F(a) both are vector spaces over F and ( ) ( )pF a F a , therefore, 

 [ ( ) : ] [ ( ) : ]pF a F F a F n   

We claim that [ ( ) : ]pF a F n . 

We know that [ ( ) : ]pF a F  = degree of minimal polynomial of apover F. 

We shall prove that g(x) is minimal polynomial of ap over F. For this, it is sufficient to prove that g(x) is 

an irreducible polynomial. 

Let ( ) [ ]h x F x  be a factor of g(x). Then, 

 g(x) = h(x)t(x) 

for some ( ) [ ]t x F x . Thus, 

 g(xp) = h(xp)t(xp) 

and so h(xp) is a factor of g(xp) in F[x]. 

But    ( 1) 1

0 1 1 0 1 1( ) ... ... ( )
p pp p p p p n p np n n

n ng x x x x x x x f x      

             

      ( ) | ( )       ( ) ( )  for some integer ,  0 .
p kp ph x f x h x f x k k p      

Taking derivatives both sides 

    
1 11'( ) ( ) '( )      0 ( ) '( )   [ch. ]

k kp ph x px k f x f x k f x f x F p
       

Since f(x) is separable polynomial so '( ) 0f x  . Therefore, either k = 0 or k = p. 

If k = p, then h(xp) = (f(x))p = g(xp)      ( ) ( )h x g x  . 

If k = 0, then h(xp) = (f(x))0 = 1      ( ) 1ph x  , a constant function, so h(x) = 1. 

Thus, g(x) is irreducible polynomial of degree n, therefore, 

 [F(ap) : F] = n. 

Hence [F(ap) : F] = [F(a) : F]     ( ) ( )pF a F a  . 

Conversely, suppose ( ) ( )pF a F a . 

We claim that ‘a’ is separable over F. 

Let, if possible, ‘a’ is not separable. 
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Let ( ) [ ]f x F x  be the minimal polynomial of ‘a’. Then, by our assumption f(x) is not separable over F. 

Since ch.F = p > 0 and f(x) is inseparable over F. 

So, ( ) [ ]pf x F x . 

Let ( ) ( )pf x g x  for some ( ) [ ]      ( ) ( ) 0pg x F x g a f a    . 

ap is a root of the polynomial ( ) [ ]g x F x . But 

 
deg ( )

deg ( )
f x n

f x
p p

  , where n = deg f(x). 

Therefore, degree of minimal polynomial of 
p n

a
p

 . 

So, we get [ ( ) : ] [ ( ) : ]p n
n F a F F a F

p
    

which is a contradiction. Hence ‘a’ is separable over F. 

1.8. Check Your Progress. 

1. Find the splitting field of x5-1 over Q. 

2. Find the splitting field of x2-9 over Q. 

3. Show that [K : F] = 1 if and only if K = F. 

1.9. Summary. 

In this chapter, we have defined Extension of a field and derived various results. The result worth 

mentioning is that if p(x) is a polynomial of degree n over some field F, then the number of zeros, to be 

considered, of this polynomial depends on the extension that we are considering. 
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Galois Theory 

Structure 

2.1. Introduction. 

2.2. Normal Extension. 

2.3. F-Automorphism. 

2.4. Galois Extension. 

2.5. Norms and Traces. 

2.6. Check Your Progress. 

2.7. Summary. 

2.1. Introduction. In this chapter, we shall discuss about normal extensions, fixed fields, Galois 

extensions, norms, traces and the dependence of all these on normal extensions. 

2.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Normal Extensions. 

(ii) Fixed Fields, Galios Groups 

(iii) Norms and Traces. 

2.1.2. Keywords. Normal Extensions, Galois Group, Fixed Fields. 

2.3. Normal Extension. An algebraic extension K of F is said to be normal extension of F if each 

irreducible polynomial f(x) over F having a root in K splits into linear factors over K, that is, if one root 

is in K, then all the roots are in K. 

If E is the splitting field of f(x) over F such that a root ‘a’ of f(x) is in K, then E K . 
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2.3.1. Lemma. Let [K : F] = 2, then K is normal extension of F always. 

Proof. Let ( ) [ ]g x F x  be any irreducible polynomial over F. Let  be a root of f(x) and K  . Now, 

we have 

 [ ( ) : ] [ : ] 2      [ ( ) : ] 2      deg ( ) 2F F K F F F f x       . 

If degf(x) = 1, then let 

 f(x) = ax+b     with , , 0a b F a  . 

Then, 0 ( )       , 0
b

f a b a
a

         . 

But       
b

F K K
a

     . 

If degf(x) = 2, then let f(x) = ax2+bx+c     with 0a  . If   be a root of f(x), then, 

 ( ) ( )( ),    
b

f x x x a K
a

       

   ( )
b

a
    is other root of f(x). 

Since 
b

F K
a
   and       ( )

b
K K

a
      . 

Hence K is a normal extension of F. 

2.3.2. Theorem. Let K be a finite algebraic extension of a field F then K is a normal extension of F iff K 

is the splitting field of some non-zero polynomial over F. 

Proof. Let K = F(a1,a2,…,an) be a finite algebraic extension of F. Suppose K is normal extension of F. 

For each ia K , let fi(x) be the minimal polynomial of ai over F. Since K is normal extension of F, so 

fi(x) splits completely into linear factors over K. 

Let f(x) = f1(x)f2(x)…fn(x). 

Let ‘a’ be any root of f(x), then ‘a’ is also a root of some fi(x) and hence a K . Let E be the splitting 

field of f(x). Then, E K . 

Now, 
1

( ) ( ) 0
n

i j i

j

F a f a


  . Therefore, ai is a root of f(x), that is, ia E . 

Therefore, 1 2( , ,..., )       nF a a a E K E   . 

Thus, K = E. 

Hence K is the splitting field of f(x) over F. 
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Conversely, let K be the splitting field of some non-zero polynomial f(x) over F. Let a1,a2,…,an be the 

roots of f(x). Then, K = F(a1,a2,…,an). 

By definition, [ : ] !K F n . 

So, K is finite algebraic extension of F. Let p(x) be any irreducible polynomial over F with a root   in 

K. p(x) is also a polynomial over K with ( )x   as a factor in K[x]. So p(x) is not irreducible over K. 

Let L be the splitting field of p(x) over K. We claim that L=K. 

Let, if possible, L K . Then, there exists a root ' of p(x) in L such that ' K   . As   and ' are 

conjugates over F, there exists an isomorphism : ( ) ( ')F F    such that 

( ) '  and ( )  for every  in F        . Now, ( )F F K   gives K is a splitting field of f(x) over

( )F  . 

Further, 1 2 1 2( ') ( , ,..., )( ') ( ')( , ,..., )n nK F a a a F a a a     gives ( ')K   is a splitting field of f(x) over 

( ')F  . Then, there exists an isomorphism : ( ')K K   such that 

 ( ) ( ) for every x in F( )x x   . 

But then ( ) ( ) '  and ( ) ( )   for every  in F              . 

Hence : ( ')K K   is an onto isomorphism, such that ( ) '  and ( )   for every  in F        . If 

 1

0 1 1( ) ... n n

n nf x x x x   

      

in F[x] with 0n  . Then, 

 1 2( ) ( )( )...( )n nf x x a x a x a     

Let ' : [ ] ( ')[ ]K x K x   be an extension of   such that 

1 1

0 1 1 0 1 1

1 1

0 1 1 0 1 1

'( ( )) '( ... ) '( ) '( ) ... '( ) '( )

( ) ( ) ... ( ) ( ) ...

( )

n n n n

n n n n

n n n n

n n n n

f x x x x x x x

x x x x x x

f x

             

           

 

 

 

 

         

         



 

Also, 

1 2 1 2

1 2

'( ( )) '( ( )( )...( )) '( ) '( ) '( )... '( )

( ( ))( ( ))...( ( ))

n n n n

n n

f x x a x a x a x a x a x a

x a x a x a

       

   

       

   
 

We get that 1 2( ), ( ),..., ( )na a a    are also roots of f(x). Since   is one-one, so 

    1 2 1 2( ), ( ),..., ( ) , ,...,n na a a a a a     

It implies   permutes the roots of f(x). Therefore, 

 1 2 1 2( , ,..., ) ( ( ), ( ),..., ( ))n nK F a a a F a a a     



Galois Theory 31 

 

However, 

 1 2 1 2 1 2( ') ( ) ( , ,..., ) ( ( ), ( ),..., ( )) ( , ,..., )n n nK K F a a a F a a a F a a a K           

It implies ' K  , which is a contradiction. 

Thus, L = K, so p(x) splits completely over K. Hence K is a normal extension of F. 

2.3.3. Corollary. Let K be a finite normal extension of F. If E be any subfield of K such that 

F E K  , then K is normal extension of E. 

Proof. Since K is a finite normal extension of F, so there exist a polynomial f(x) over F such that K is 

splitting field of f(x) over F. Then K is also a splitting field of f(x) over E.  Hence by above theorem K is 

normal extension of E. 

2.3.4. Corollary. Let K be finite normal extension of F. If 1 2 and    be any two elements in K 

conjugate over F, then there exists an F automorphism  of K such that 1 2( )   . 

Proof. Let K be the splitting field of the non-zero polynomial f(x) over F.  Since 1, 2  are conjugates 

over  F there exist an isomorphism   such that  : F(1)  F(2) defined by     

    (1) = (2)  and   () =   for all    F. 

Now    [F(1) : F] = [F(2) : F] = degree of minimal polynomial of 1  (or 2). 

Now ,    f(x)  F[x]  F(1)[x]  and  f(x)  F[x]  F(2)[x] 

Therefore, K is splitting field of f(x) over F(1) as well as F(2). 

Then there exists   : K  K  s.t. () =  ()   for all   F(1)  and  () =  () =   for all   F. 

Then (1) =  (1) = 2.  Hence   is an F-automorphism of K such that  (1) = 2. 

Remark. Converse of Corollary 1 need not be true, for if 4, ( 2) and ( 2)F Q E Q K Q   . Then K is 

normal extension of E, E is normal extension of F but K is not a normal extension of F. 

2.3.5. M(S, K). Let K be any field and S be any non-empty set.The set of all mappings from S to K is 

denoted by M(S, K). 

2.3.6. Theorem. If 1 2, ,..., n    be any n monomorphisms in M(E, K), then these are always L.I., where 

E and K are fields. 

Proof. If n = 1, then consider 1  and let, for 1a K  

 1 1 1 10      ( ) 0  for all Ea a        

Since 1 1a   is a homomorphism from E to K and 

 1 1( ) 0  for all Ea     

In particular,    1 1 1 1(1) 0  where 1 E      (1) 0a a     . 
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Since 1  is a monomorphism so 1(1) 0  , then a1 = 0. 

Hence 1  is linearly independent. 

Now, let us assume, as our induction hypothesis, that 1 2 1, ,..., n     are L.I. 

We have to prove that 1 2, ,..., n    are L.I. 

Let 1 2, ,..., n    are scalars such that 

 1 1 2 2 ... 0n n            …(1) 

If any of i  is zero, then the above relation reduces to a combination of (n - 1) i ’s and by induction 

hypothesis, all i ’s are zero. Hence we assume that 1 2, ,..., n    are all non-zero. 

So, let W.L.O.G., 0n  . Then dividing (1) by n , we have 

 1 1 2 2 1 1... 0n n nb b b             …(2) 

where 
1i

i i n

n

b


 


  . 

Since 1  and n  are distinct, so there exists an element 1x E  such that 

 1 1 1( ) ( )nx x   

Then, clearly 1 0x  , since image of 0 is 0 for any homomorphism. 

Now, let x E  be any element then 1xx E  also. Compute 

     1 1 2 2 1 1 1 1... 0 0n n nb b b xx xx           

       1 1 1 2 2 1 1 1 1 1   ... 0n n nb xx b xx b xx xx           

               1 1 1 1 2 2 2 1 1 1 1 1 1   ... 0n n n n nb x x b x x b x x x x                

Since 1( ) 0n x  , so dividing above equation by 1( )n x . 

 

 
 

 

 
 

 

 
   1 1 2 1 1 1

1 1 2 2 1 1

1 1 1

... 0
n

n n n

n n n

x x x
b x b x b x x

x x x

  
   

  



        …(*) 

From (2), we also have 

 1 1 2 2 1 1( ) ( ) ... ( ) ( ) 0n n nb x b x b x x             …(**) 

Subtracting (**) from (*), we get 
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 1 1 2 1 1 1

1 1 2 2 1 1

1 1 1

1 1 ... 1 0
n

n n

n n n

x x x
b x b x b x

x x x

  
  

  



 

     
                

     
 …(3) 

Since 1 1 1 1
1 1 1

1 1

( ) ( )
( ) ( )      1      1 0

( ) ( )
n

n n

x x
x x

x x

 
 

 
       

Now as above equation (3) holds for every x E , so 

 

 

 

 

 

 
1 1 2 1 1 1

1 1 2 2 1 1

1 1 1

1 1 ... 1 0
n

n n

n n n

x x x
b b b

x x x

  
  

  



 

     
                

     
 

which is a combination of (n-1) i ’s. So, we get 

 

 

 

 

 

 
1 1 2 1 1 1

1 2 1

1 1 1

1 1 ... 1 0
n

n

n n n

x x x
b b b

x x x

  

  





     
                

     
 

Now, as 1 1

1

( )
1 0

( )n

x

x




  , so b1 = 0 and so 1 0

n




 , which implies 1 0  , a contradiction. 

Hence any set of n monomorphism is linearly independent. 

2.3.7. Definition. Let K be any field, then the set of all automorphisms on K is denoted by AutK. 

2.3.8. Corollary. AutKconsists of linearly independent elements. 

Take E = K in above theorem, the result follows. 

2.3.9. Exercise.  The set of all automorphisms of K form a group under composition of mappings. 

2.4. F-Automorphisms. Let F be any field and K be any extension of F. An automorphism : K K   

is called F-automorphism of K if 

 ( )   for all x x x F   . 

Notation. G(K, F) will denote the group of all F-automorphisms of K. G(K, F) is called Galio’s group of 

K over F and known as group of automorphisms from K to K which fixes F. 

2.4.1. Exercise. Prove that G(K, F) is a subfield of AutK. 

2.4.2. Theorem. If P is a prime subfield of K, then prove that AutK = G(K, P), that is every 

automorphism on K fixes P. 

Proof.  Let    Aut (K)   then   (0) = 0  and   (1) = 1 

Case 1. CharK = P  for some prime p. 

Then  P   Zp = {0 , 1 ,......, p  1}. If    Zp  then   = 1+1+......+1  ( times)  

  () =  (1+1+......+1) =  (1) + (1)+......+  (1) = 1+1+......+1 =  

  () =     for all     Zp.            fixes P.      

        G(K , P)      Aut K  G(K , P). 
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Case 2. CharK = 0. 

Then  P   Q  =  {mn1  :  m n  Z} and  

 (mn1) =  (m)  (n1) =  (m)  
1

( )n


  = mn1  for all mn1  Q    

       fixes P.           G(K , P)              Aut K  G(K , P). 

So, in both cases, we get Aut (K)  G(K , P).  But  G(K , P)  Aut (K)  always.   

So  Aut (K) = G(K , P). 

2.4.3. Theorem. Let K be any extension of F and ( , )G K F  . If ‘a’ is an element which is algebraic 

over F then ‘a’ and ‘ ( )a ’ are conjugates over F. 

Proof. We know that G(K , F) = {   Aut K  : () =  for all   F }. 

Let a  K be an algebraic element over F. So let f(x) = 0 + 1x +...+ xn  be the minimal polynomial of 

‘a’ over F and then    0 =  f(a) = 0 +1a +...+ an  K also, since  a , 0 , 1 , ...  K. 

Now,    0 =  (0) =  ( )f a  =  (0 +1a +...+ an)   

          =  (0) + (1)  (a) + ...+  (an) 

          = 0 + 1 (a) +...+  ( )
n

a  =  ( )f a  

    ( )f a  = 0, so (a) is also a root of f(x)    

         (a) is conjugate of ‘a’ over F. 

2.4.4. Exercise. Let G be a group of automorphisms of a field K. Then, the set 

0 { : ( )  for all }F x K x x G      is a subfield of K. 

Also, this subfield is known as fixed field under G. 

2.4.5. Example. Let  3 2K Q . The minimal polynomial of 3 2  over Q is x3 – 2. It has only one root, 

namely, 3 2  in K. Since K is a field of real numbers. Let   be any Q – automorphisms of K. Then 

 3 2 K   is a root of x3 – 2. So,  3 32 2  . Let x be any element of K, then x can be expressed as: 

  
2

3 32 2a b c  , where , ,a b c Q . 

So,     
2 2

3 3 3 3( ) ( ) ( 2) ( ) 2 ( ) 2 2x a b c a b c x             

    I  . Thus, AutK = { I }. 

Hence in this case K itself is the fixed field under AutK. 
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2.4.6. Theorem. Let G be a finite subgroup of AutK. If F0 is fixed subfield under G, that is,

0 { : ( )  for all }F x K x x G     . Then, [K : F0] = o(G). 

Proof. Let [K : F0] = m and o(G) = n. 

Let, if possible, m < n. 

Let 1 2, ,..., n    are elements of G and let {x1, x2, . . . , xm} be a basis of K over F0. 

Consider a system of m linear homogeneous equations, 1 j m   

      1 1 2 2 ... 0j j n j nx u x u x u          …(1) 

Note that      1 2, ,...,j j n jx x x    are elements of K and u1, u2, . . . , un are variables. 

Since the number of equations is less that the number of variables, so the system (1) has a non-trivial 

solution, say, y1, y2, . . . , yn, here not all yi’s are zero. 

      1 1 2 2 ... 0j j n j nx y x y x y          …(2) 

for j = 1, 2, … , m. 

Now, if x K , then 

 1 1 2 2 ... n nx x x x      , where 0i F  . 

Multiplying jth equation of (2) by 
j , we get 

      1 1 2 2 ... 0j j j j n j n jx y x y x y          

           1 1 1 2 2 2      ... 0j j j j n j n j nx y x y x y              

because 
0j F   and 

j G   and F0 is fixed under G. 

     1 1 2 2      ... 0j j j j n j j nx y x y x y           for j = 1, 2, …, m. 

Thus, we have the system of equations, 

      1 1 1 1 2 1 1 2 1 1 ... 0n nx y x y x y          

      1 2 2 1 2 2 2 2 2 2 ... 0n nx y x y x y          

 ………………………………………………….. 

      1 1 2 2 ... 0m m m m n m m nx y x y x y          

Adding all these equations, we get 

   

 

1 1 1 2 2 1 2 1 1 2 2 2

1 1 2 2

...  ...

... ... 0

m m m m

n m m n

x x x y x x x y

x x x y

       

   

      

     
 

     1 1 2 2      ... 0n nx y x y x y             for all x E  
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  1 1 2 2      ... 0n ny y y x             for all x E  

1 1 2 2     ... 0n ny y y        

where atleast one of 0jy  . 

Hence 1 2, ,..., n    are L.D. over K, a contradiction. 

Thus, m n . 

Now, if possible, suppose that m > n. 

Then, there exist (n + 1) L.I. elements, say x1, x2, . . . , xn+1 in K over F0. Consider the system of n linear 

homogeneous equations in (n+1) variables 

      1 1 2 2 1 1... 0j j j n nx u x u x u            …(3) 

for j = 1,2,…n. 

Since the number of variables is again greater than the number of equations, so these homogeneous 

equations have a non-trivial solution. Let z1, z2, . . . , zn+1 be a non-trivial solution of the system (3). Let r 

be the smallest non-zero integer such that zj = 0 for all 1j r  . 

Then, the system (3) reduces to 

      1 1 2 2 ... 0j j j r rx z x z x z          …(4) 

Since 0rz   and rz K . Consider, 
l i
i

r

z
z

z
 . Then, from (4), we get 

        1 1 2 2 1 1... 0l l l

j j j r r j rx z x z x z x           …(5) 

for j = 1,2,…n. 

Let for j = 1, 1 I  , we get from (5), that 

 
1 1 2 2 1 1... 0l l l

r r rx z x z x z x           …(6) 

If all 
1 2 1, ,...,l l l

rz z z 
 are in F0, then from (6), we get that x1, x2, . . . , xr are L.D. over F0, which is not 

possible. 

Hence atleast one of l

iz  is not in F0, say 
1 0

lz F . 

Further, we get that 1r  , because if r = 1, then we get that 
1 1lz   and so 

1 0

lz F . 

Since 
1 0

lz F , so there exists some i G   such that  1 1

l l

i z z  . 

Applying i G  to (5), to get 

            1 1 2 2 1 1... 0l l l

i j i j i j r r i j rx z x z x z x              

             1 1 2 2 1 1      ... 0l l l

i j i i j i i j r i r i j rx z x z x z x                  
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Since G is a group, the set  1 2, ,...,i i i n       coincide with the set  1 2, ,..., n   , though the order 

of elements will be different. So, we get 

              1 1 2 2 1 1... 0l l l

j i j i j r i r j rx z x z x z x             …(7) 

Subtracting (7) from (5), we have 

            1 1 1 2 2 2 1 1 1... 0l l l l l l

j i j i j r r i rx z z x z z x z z       
           
     

 

Put  l l

k k i kt z z  . Then, the above system becomes 

      1 1 2 2 1 1... 0j j j r rx t x t x t         

where 1 0t  . Thus, (t1, t2, …, tr-1, 0, 0, …, 0) is a non-trivial solution of given system, which is a 

contradiction to the choice of r. Therefore, n m  

So, m = n. Hence the proof. 

2.5. Galois Extension. A finite extension K of a field F is said to be Galoi’s extension of F if F is the 

fixed subfield of K under the group G(K, F) of all F-automorphisms of K i.e. K/F is Galoi’s extension if 

 ,G K F
K F . 

2.5.1. Simple Extension. An extension K/F is said to be simple extension if K is generated by a single 

element over F. 

2.5.2. Corollary. Let ( )K F   be a simple finite separable extension of F. Then, K is the splitting field 

of the minimal polynomial of   over F iff F is the fixed field under the group of all F-automorphisms of 

K, that is K is Galoi’s extension of F. 

Proof :  Let  f(x) be the minimal polynomial of    over  F and let degree f(x) = m.   

Then [K : F] = m. Let  1 = , 2 , 3 ,…, r be the distinct conjugates of  in  K.  

Then K = F (i)  for all i = 1, 2, …, r. Since  and i are conjugates over F, so   an isomorphism, say 

i : F(1)  F(i)  given by  i(1) = i and i() =    for  all    F. But  K =  F(i)  for all i, so we 

have that 

 i : K  K  s.t.  i(1) = i  and  i() =  for all   F. 

Since 1 generates K over F, each i is uniquely determined. Further, we know for any F-automorphism 

 of K , i(1) is a conjugate of 1 and hence i(1) = i for some i.   

From this, it follows that  = i for some i.   

Hence the group  G(K , F) consists of 1 , 2 ,…, r . Let F0 be the fixed field under G(K, F). Then by 

theorem 2.4.6., 

   [K : F0]  =  o[G(K , F)]  =  r. 
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So , F = F0 if and only if r = m.  Hence F is the fixed field under G if and only iff f(x) has all m roots in 

K, that is, if and only if K is the splitting field of f(x) over F. 

2.5.3. Theorem. Let K be a finite extension of F and ch.F = 0. Then, K is normal extension of F iff the 

fixed field under G(K, F) is F itself, that is, K is Galoi’s extension of F. 

Proof. We know that any finite field extension of a field of characteristic zero is simple extension so 

K F  is a simple extension.  So , let  K = F() for some   K.   

Now, suppose that K is a normal extension of F.  Then, by definition, every irreducible polynomial over 

F having one root in K splits into linear factors over K. Since [K : F] is finite , so   is algebraic over F.  

Let f(x) be minimal polynomial of  over F and  K be its splitting field over F.  Then K  K. Also,  

  K , F  K 

          K   K. 

So K = K i.e. K is splitting field of f(x) over F. Hence, by corollary 2.5.2., F is itself fixed subfield under 

G(K , F), that is, K F  is Galois extension. 

Conversely, suppose that F is itself the fixed subfield under G(K, F). Again, by corollary 2.5.2., K is the 

splitting field of the minimal polynomial of  over F. Further we know that if K is a finite algebraic 

extension of a field F iff K is the splitting field of some non-zero polynomial over F. Hence K is a 

normal extension of F. 

2.5.4. Fundamental Theorem of Galoi’s Theory. 

Given any subfield E of K containing F and subgroup H of G(K, F) 

(i) 
( , )G K EE K  

(ii) ( , )HH G K K  

(iii) [K : E] = o(G(K, E)) and [E : F] = index of G(K, E) in G(K, F) 

(iv) E is a normal extension of F iff G(K, E) is a normal subgroup of G(K, F) 

(v) when E is a normal extension of F, then 

( , )
( , )

( , )
G K F

G E F
G K E

 . 

Proof. (i) Since K is a finite normal extension of F and F E K  , we must have that K is a finite 

normal extension of E. so, by above theorem fixed field under G(K, E) is E itself, that is E = G(K, E). 

(ii) By definition, { : ( )   }HK x K x x H      , that is each element of KH remains invariant 

under every automorphisms of H. So, clearly, we have 

( , )HH G K K  

Now, we know that if F0 is fixed subfield under subgroup G, then [K : F0] = o(G). 

Here KH is fixed subfield under H, so we must have [K: KH] = o(H) …(1) 
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Now, K is normal extension of KH, so KH is fixed subfield under G(K, KH), by above theorem. So again 

we have 

 [K : KH] = o(G(K, KH))      …(2) 

By (1) and (2), we obtain 

 O(H) = o(G(K, KH)) 

So, H = G(K, KH) 

(iii) Since K|F and K|E both are finite normal extensions, so by above theorem fixed field under G(K, 

F) and G(K, E) are F and E respectively. 

Hence [K : E] = o(G(K, E)) and [K : F] = o(G(K, F)) 

Now, [K : F] = [K : E][E : F] 

So 
[ : ] ( ( : ))

[ : ] index of G(K, E) in G(K, F)
[ : ] ( ( : ))

K F o G K F
E F

K E o G K E
    

(iv) Let E be a normal extension of F. Then, E is algebraic extension of F. Let a E , then ‘a’ is 

algebraic over F. Let p(x) be the minimal polynomial of ‘a’ over F. Then, E|F being normal and E 

contains a root of p(x), then all roots of p(x) are in F. 

Hence E contains all the conjugates of ‘a’ over F. Let ( , )G K F  , then ( )a  is a conjugate of ‘a’ and 

hence ( )a E  . 

Let ( , )G K E then : K K   such that ( )  for all E     . In particular, 

( ( )) ( )                  [ ( ) ]a a a E      

1 1 1 1   ( ( ( ))) ( )       ( )( )       ( , )a a a a a G K E                   

Hence ( , )  ( , )G K E G K F . 

Conversely, let ( , )  ( , )G K E G K F . 

We shall prove that E is a normal extension of F. 

Let       a E K a K     and K is normal extension of F. 

Therefore, K contains all the roots of minimal polynomial p(x) of ‘a’ over F. Equivalently, if L is the 

splitting field of p(x) over F, then L K . 

Let b be any other root of p(x), then b L K   and b is a conjugate of ‘a’ over F. Hence there exists an 

isomorphism : K K   such that 

 ( )  and ( )  for all a b F        

Let ( , )G K E , then 
1 ( , )G K E   . Therefore, 

 
1 ( )       ( ( )) ( )      ( )  for all ( , )a a a a b b G K E              

But E is fixed under G(K, E), therefore, we get 

 ( )             b a E b E L E       

Thus, E is normal extension of F. 

(v) Let E be a normal extension of F. Then, E = F(a) for some a E . For any ( , )G K F  , let E  

denotes the restriction of  to E. Since ( )a E  , we get ( )E E  . 
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But [ ( ) : ] [ : ]E F E F  . Therefore, we get ( )E E  . Hence E  is an F-automorphism of E and so 

( , )E G E F  . 

Define a mapping : ( , ) ( , )G K F G E F   by setting 

 ( )  for all ( , )E G K F      

Clearly, for any , ( , )G K F  , we have 

 ( ) ( ) = ( ) ( )E E E           

Hence   is a group homomorphism. 

Consider any ( , )G E F  . Now, ( )a  is a conjugate of ‘a’ over F. Thus, there exists an  

F-automorphism  on K such that ( ) ( )a a  . 

Further, as  and    are both identity of F and E is generated by ‘a’ over F. We get 

 ( ) ( ) for all ( )       ( )Ex x x F a E            

This proves   is onto mapping. Hence 

 ( , ) ( , )G E F G K F Ker  

Now, if Ker   iff E  is identity on E iff ( )  for all x x x E    iff ( , )G K E  . 

Hence ( , )Ker G K E   and we obtain 

 ( , ) ( , ) ( , )G E F G K F G K E . 

2.5.5. Example. Determining Galois group of splitting field of x4+1 over Q. 

Solution. Roots of  x4+1 over Q are  

     x = 
( 2 1)

4

m i

e

 

,   m = 0 , 1 , 2 , 3     

         = 4

i

e



 , 
3

4

i

e



, 
5

4

i

e



 , 
7

4

i

e



 

Let      a = 4

i

e



 ,  

Then roots are         x = a , a3 , a5 , a7 

Therefore, splitting field K of  x4+1 over Q is given by    

     K = Q(a , a3 , a5 , a7) = Q(a). 

Clearly, x4+1 is irreducible over Q , so it is minimal polynomial of x4+1 over Q. 

Now ,         [K : Q] = [Q(a) : Q]  

        = degree of minimal polynomial of ‘a’ over Q  

         = degree (x4+1) = 4 

Since K is splitting field of some non-zero polynomial over Q, so K must be normal extension of Q. 

Also, charQ = 0, so we must have that the fixed field under the Galois group G(K, Q) is Q itself. 

So, we must have     ( , )o G K Q  = [K : Q] = 4 
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Now ,            K = Q(a)  and  [K : Q] = 4   

so {1, a, a2, a3} must be a basis of K over Q. If y  K be any arbitrary element, then  

         y = 0.1 + 1. a + 2 . a
2 + 3 . a

3   ,  i  Q ,  0   i  3. 

and   (y) =  (0.1) +  (1. a) +  (2 . a
2) +  (3 . a

3)   

    = 0 + 1  (a) +  
2

2 ( )a   +  
3

3 ( )a    

Hence any   G(K , Q)  is determined by its effect on ‘a’. 

Now, (a) must be a conjugate of ‘a’ and G(K, Q) contains four elements, so we must have  

G(K , Q) = {1 , 2 , 3 , 4}, where 1(a) = a, 2(a) = a3, 3(a) = a5, 4(a) = a7. 

Now, G(K, Q) is a group of order four means that either it is a cyclic group of order 4 or it is isomorphic 

to Klein’s group. 

We observe that     1(a) = a              1 = I         and   2
2 (a) = 2  2( )a  = a9 = a 

               2
3 (a) = 3  3( )a  =  a25 = a     and   2

4 (a) = 4  4( )a  = a49 = a 

Hence,               2
2  = 2

3  = 2
4  =  I. 

So, the Galois group G(K, Q) contains no element of order 4 which in turn implies that  

G(K, Q) is isomorphic to Klein’s four group. 

2.6. Norms and Traces. 

Let E be a finite separable extension of degree n over the subfield F and K be a normal closure of E over 

F. Then, there are exactly n distinct F-monomorphisms, say, ,1i i n   , of E into K. Consider the 

mappings NE/F and SE/F of E into K as: 

/

1

( ) ( )
n

E F i

i

N x x


 ,  /

1

( ) ( )
n

E F i

i

S x x


 , 

for every x E  and 1 ≤ i ≤ n. 

Then, NE/F(x) and SE/F(x) are known as norm and trace respectively of x from E to F.  

The next theorem, indicates why to use “of x from E to F” in the definition of norm and trace. 

2.6.1. Theorem. Norm, NE/F(x) is a homomorphism of the group E* = E-{0} of the field E into the group 

F* = F-{0} of the field F. Also, the trace SE/F is a non-zero homomorphism of the additive group E of the 

field E into the additive group F of F. 

Proof. For justifying that these mappings are homomorphisms on the said structures, consider ,x y E , 

then 

/ / /

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n n

E F i i i i i E F E F

i i i i

N xy xy x y x y N x N y    
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and, 

   / / /

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n n

E F i i i i i E F E F

i i i i

S x y x y x y x y S x S y    
   

             

Further, if   is any F-automorphism of K, then, for x E , the mappings ρi, 1 ≤ i ≤ n, of E into K 

defined by ( ) ( ( ))i ix x    are clearly n distinct F- monomorphisms of E into K and so 

{ 1 2, ,..., n    } = { 1 2, ,..., n   }, might be with different order. Let x be any arbitrary element of E, then  

 / /

1 1 1

( ) ( ) ( ) ( ) ( )
n n n

E F i i i E F

i i i

N x x x x N x    
  

 
    

 
    

and   / /

1 1 1

( ) ( ) ( ) ( ) ( )
n n n

E F i i i E F

i i i

S x x x x S x    
  

 
    

 
   . 

Therefore, norm and trace of x belong to the fixed field under G(K,F). Since K is a normal closure of a 

seperable extension, so it is finite separable normal extension of F. Hence it follows that the fixed field 

under G(K,F) is F itself. Hence / /( ), ( )E F E FN x S x F . 

Now, we only need to prove that SE/F is not the zero homomorphism. On the contrary assume that 

/

1

( ) ( ) 0,        for all x E            
n

E F i

i

S x x


    

However, it concludes that the set { 1 2, ,..., n   } of distinct monomorphisms of E into K is linearly 

dependent over K, which in turn contradicts as we already have proved the result “If E and K be any two 

fields, then every set of distinct monomorphisms of E into K is linearly independent”. Hence the proof. 

Now consider two possibilities: 

1. Let D be a finite separable extension of subfield F and E be a subfield of D, containing F. Then 

D is a separable extension of E and E is a separable extension of F. Thus if x is any element of D, 

define the norm / ( )D EN x  of x from D to E, which is an element of E as obtained in Theorem 1, 

and then define the norm of / ( )D EN x  from E to F, which is an element of F. 

2. Also, define the norm of x from D to F. 

The next theorem shows that these two procedures lead to the same element of F. 

2.6.2. Theorem. Let D be a finite separable extension of a subfield F and E be a subfield of D 

containing F. Then, for every x   D, 

i) NE/F(ND/E(x)) = ND/F(x) 

ii) SE/F(SD/E(x)) = SD/F(x). 
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Proof. Let K be a normal closure of D over F and [E : F] = n, [D : E] = m, then due to tower law, 

[D : F] = mn. Thus, there are exactly n distinct F-monomorphisms σ1,…..,σn (say) of E into K and m 

distinct E-monomorphisms ԏ1, …… , ԏm (say) of D into K. Extending σ1,…..,σn from E to K, we can 

obtain n distinct F-automorphisms ' ' '

1 2, ,..., n    of K which act like σ1,…..,σn on E. 

Let φij(i = 1,…, n; j = 1,…., m) be the mappings of D into K defined by  

φij(x) = '

i (ԏj(x)) for all x   D. 

These mn mappings are distinct F-monomorphisms of D into K and hence they form a complete set of 

F-monomorphisms of D into K. If x   D, then  we have 

 

 

     

' '

/

1 1 1 1
1 1

'

/ / / /

1 1

( ) ( ) ( ) ( )

( ) ( ) ( )

D F ij i j i j

i n i n i n j m
j m j m

i D E i D E E F D E

i n i n

N x x x x

N x N x N N x

    

 

       
   

   

 
    

 

  

   

 

 

Similarly, we can derive the result for traces also. 

2.7. Check Your Progress. 

1. Consider F = Q and E = Q(i), define norm and trace for this structure. 

2. Find the Galois group of x3  2  over Q. 

2.8.  Summary. 

In this chapter, we have derived results related to normal extensions and observed that finite algebraic 

extension is normal if it becomes splitting field of a non-zero polynomial 
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3 

Galois Fields 

Structure 

3.1.  Introduction. 

3.2.  Galois Field. 

3.3.  Normal Bases. 

3.4.  Cyclotomic Extensions. 

3.5.  Cyclotomic Polynomial. 

3.6.  Cyclotomic Extensions of the Rational Number Field. 

3.7.  Cyclic Extensions. 

3.8. Check Your Progress. 

3.9.  Summary. 

3.1. Introduction. In this chapter, we shall discuss about finite fields, cyclic and cyclotomic extensions. 

Also it will be derived that a field of composite order does not exist. Further, the relation between finite 

division rings and finite fields is obtained.  

3.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Normal bases. 

(ii) Cyclic and Cyclotomic Extensions. 

(iii) Cyclotomic Polynomials. 

3.1.2. Keywords. Galois Field, Normal Extensions, Splitting Fields. 
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3.2. Galois Field. A field is said to be Galois field if it is finite. 

3.2.1. Theorem. Let F be a field having q elements and ch.F = p, where p is a prime number. Then,  

q = pn for some integer 1n  . 

Proof. Let P be the prime subfield of F. Now, we know that upto isomorphism there are only two 

prime fields, one is Q and other is Zp. Since P is finite prime field. So, P must be isomorphic to Zp. 

Hence P must have p elements. Now, F is a finite field and P F  so F is a finite dimensional 

vector space over P. 

Let [F : P] = n(say) and let {a1, a2, …, an} be a basis of F over P. Then, each element of F can be written 

uniquely as 

 1 1 2 2 ... n na a a      where i P  . 

As each i  can be choosen in p ways, the total number of elements of F is pn. 

So, we have q = pn for some integer 1n  . 

Remark. In the other direction of above theorem, we shall show that for every prime p and integer 1n  , 

there exists a field having pn elements. First we prove a lemma: 

3.2.2. Lemma. If a field F has q elements, then F is the splitting field of ( ) [ ]qf x x x P x   , where P 

is the prime subfield of F. 

Proof. We know that the set of all non-zero elements of a field form an abelian group w.r.t. 

multiplication. So, F* = F – {0} is a multiplicative abelian group. Now, we are given that o(F) = q. 

Therefore, o(F*) = q-1. 

Now, let   be an arbitrary element of F*. Then, 

 1 1q    

where 1 is the multiplicative identity of F. Thus, 

 1             0q q q             

That is,   satisfies the polynomial ( ) qf x x x  . Therefore, all the elements of F* are root of 

( ) qf x x x  . Also, f(0) = 0 and so 

 ( ) 0   for all Ff     

Since f(x) is of degree q, so it cannot have more than q roots in any extension of P. Thus, F is the 

smallest extension of P containing all the roots of f(x). 

Hence F is the splitting field of f(x) over P. 

Remark. In above lemma, we have proved that every finite field is splitting field of some non-zero 

polynomial. 
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3.2.3. Theorem. For every prime p and integer 1n  , there exists a field having pn elements. 

Proof. Since p is a prime number. Therefore, Zp = {0, 1, …, p-1} is a field w.r.t. +p and xp and is also a 

prime field. Consider the polynomial 

 ( ) [ ]
np

pf x x x Z x    

Let K be the splitting field of f(x). Then, K contain all the roots of f(x). 

Since degree of f(x) is pn, so f(x) has pn roots in K. Let these roots be 
1 2, ,..., np

a a a . Then, we can write 

 
1

( )

n

n
p

p

i

i

x x x a


     where ia K . 

Let { : }
npT a K a a   . Then, 0T  , because 0 T  as 0 0

np   and 0 K . 

Now, 1 K  and 1 1      1
np T   . 

Let 
pk Z  be any arbitrary element. Then, k = 1+1+…+1 (k-times). Therefore, 

 (1 1 ... 1) 1 1 ... 1 1 1 ... 1
n n n n np p p p pk k              [ . ]ch F p  

    k T   

So, every element of Zp is in T, that is, T contains prime field Zp of K. Further, consider ai any root of 

f(x). Then, 

   0    0        
n np p

i i i i i if a a a a a a T         

Thus, T also contains all the roots of f(x). 

We claim that T is a subfield of f(x). 

Let , T   . Then, 
np   and 

np  . Now, 

 ( ) 0       
n n np p p T                 

and ( )       
n n np p p T        . 

Thus, T is a subfield of K. So, T K . 

So, we have T is a field which contains all the roots of f(x). But K is splitting field of f(x). So, K T . 

Thus, we have K = T. 

Now, if T , then     0    ( ) 0
n np p f           

Thus, every element of T is a root of f(x). 

Therefore, 
1 2{ , ,..., }np

T a a a . 

Now, we claim that all these elements are distinct. 
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We have ( )
npf x x x  . Any root ia  of f(x) is a multiple root of ( )f x  iff ia   is a root of '( )f x . But 

 1'( ) 1 1
nn pf x p x        . pch Z p  

So, ia  is not a root of '( )f x . Therefore, no root of f(x) is a multiple root. So, all elements of T are 

distinct. Hence 

 o(T) = pn = o(K). 

Thus, we have obtained a field of order pn. 

3.2.4. Theorem. Finite fields having same number of elements are isomorphic. 

Proof. Let K1 and K2 be finite fields such that o(K1) = o(K2). 

Let ch.K1 = p1 and ch.K2 = p2, where p1 and p2 are primes. Then, we have 

Then, we have    1 2

1 1 2 2   and   
n no K p o K p   for some integers n1 and n2. So, we have 

 1 2

1 2 1 2 1 2       (say) and (say)
n n

p p p p p n n n       

Let P1 and P2 are prime subfields of K1 and K2 respectively. Then, 

 1 2P Z p P    . So, 1 2P P  

By previous lemma, K1 is the splitting field of the polynomial 
1( ) [ ]

npf x x x P x   . 

Now, 1 2P P  so 1 2[ ] [ ]P x P x . 

Let '( )f t  be the corresponding polynomial of f(x) and 
2'( ) [ ]

npf t t t P t   . 

Again, by previous lemma, K2 is the splitting field of the polynomial 2'( ) [ ]f t P t . 

But 1 2P P . Therefore, splitting field will also be isomorphic, that is, 1 2K K . 

3.2.5. Theorem. A field is finite iff F* = F – {0} is a multiplicative cyclic group. 

Proof. Let F be a finite field with q elements. Then, F* = F –{0} is a multiplicative group with (q – 1) 

elements. 

We claim that F* contains elements having order (q - 1). 

Since F* is a finite group, so if *F , then by Lagrange’s theorem 

 ( *) 1   for all *o F F    

That is, multiplicative order of each element is finite, so let ‘n’ be the least positive integer such that 

 1   for all *n F    

Then, 1n q  . 

Now, consider the polynomial f(x) = xn – 1. 
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Then, ( ) 1 0nf          satisfies f(x) for all *F . 

But f(x) is of degree n, it can have atmost n roots. Also, all elements of F* are roots of f(x). Therefore, 

( *)       1o F n q n    . 

Hence there exists atleast one element *F  such that ( ) ( *) 1o o F q    . 

Therefore, F* is cyclic. 

Conversely, suppose that F* is cyclic. Let F* = < a >. 

If a = 1, then o(F*) = o(a) = o(1) = 1. So, F = {0, 1} is finite. 

So, let us assume that 1a  . 

Case I. . 0ch F   

Since1 *       1 *F F    . Therefore, 1 na   for some integer n. 

W.L.O.G., let 1n  , then 

2 1    ( ) 2     ( ) is finite    ( *) is finite    ( ) is finite.na o a n o a o F o F       

Since Ch.F = 0, then prime subfield P of F is such that P F  and P Q , a contradiction, as 

( )  and ( )o Q o P  . 

Hence this case is not possible. 

Case II. . 0ch F   

Then, we must have ch.F = p for some prime p. 

Let P be the subfield of F, then 
pP Z  and o(P) = p. Since 1,  1a a F    

   1 *       1  for some integer n      1 0n na F a a a a a            . 

Thus, ‘a’ satisfies the polynomial f(x) = xn – x – 1 over P[x] and hence ‘a’ is algebraic over P. 

Then, [P(a) : P] = degree of minimal polynomial of ‘a’ over P = r (say) 

Therefore, P(a) is a vector space over P of dimension r. Thus, ( )

1 2( ) {( , ,..., ) : }r

r iP a P P      . 

But 
( )( )       ( )       ( ( ))r r ro P p o P p o P a p     . Now, F* = < a > and ( )a P a . 

   * ( )      o( *) ( ( ))      o( *)F P a F o P a F      . 

Therefore, o(F*) is finite. 

Remark. The above theorem may not be true when a field F is infinite. We give an example of field of 

rational numbers. Let * { : 0}Q Q    . 

We shall prove that the multiplicative group Q* is not cyclic. 

Let, if possible, Q* is cyclic. So, let g be its generator, that is, Q* = < g >, where 
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1 2

1 2

1 2

1 2

...

...

r

t

r

t

p p p
g

q q q

  

 
  

where pi’s and qi’s are distinct primes. 

Now since 1 *Q , so there must exist a positive integer n such that 

 
1 2

1 2 1 2

1 2

1 2
1 2 1 2

1 2

...
1       ... ...

...

r

tr

t

n

nn n n n nn r
r t

t

p p p
g p p p q q q

q q q

  
    

 

 
    

 
 

which is a contradiction, since pi’s and qi’s are distinct primes. Hence Q* is not cyclic. 

Remark. In view of the above remark, we can say that R* and C* are not cyclic because every subgroup 

of a cyclic group is cyclic and Q* is not cyclic. 

3.3. Normal Bases. Let K be a finite separable normal extension of a subfield F and 

 1 2( , ) , ,..., nG K F     

be the Galois group of K over F. If x K , then a basis of the form  1 2( ), ( ),..., ( )nx x x    for K over F is 

called a normal basis of K over F. 

3.3.1. Theorem. Let K be a finite separable normal extension of degree n over a subfield F with Galois 

group  1 2( , ) , ,..., nG K F    . The subset  1 2, ,..., nx x x  of K is a basis for K over F if and only if the 

matrix 

 

1 1 1 2 1

22 1 2 2

1 2

( ) ( )    ( )

( )( ) ( )   ...
( )

          

( ) ( )   ( )

n

n

i j

n n n n

x x x

xx x
x

x x x

  

 


  

 
 
 
 
 
 

 

is non-singular. 

Proof. Suppose first that the matrix  ( )i jx  is non-singular.  

Since [K : F] = n, so it is enough to show that the set  1 2, ,..., nx x x  is linearly independent over F. For 

this, consider  

1 1 2 2 ... 0n na x a x a x     

where ,1 ,ia i n   are elements of F. 

Applying the F-automorphisms 1 2, ,..., n   , to obtain 

1 1 1 2 1 2 1

1 2 1 2 2 2 2

( ) ( ) ... ( ) 0

( ) ( ) ... ( ) 0

.                            .                        .

.                            .                        .

.                         

n n

n n

a x a x a x

a x a x a x

  

  

   

   

1 1 2 2

   .                        .

( ) ( ) ... ( ) 0,n n n n na x a x a x     
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which is a homogeneous system of equations in unknowns ,1 ,ia i n   with non-singular matrix of 

coefficients  ( )i jx . It follows from the theory of homogeneous linear equations that 

1 2 ... 0na a a    . Thus  1 2, ,..., nx x x  is linearly independent and so forms a basis, as required. 

Next, suppose that the matrix  ( )i jx  is singular. 

Again, due to the theory of homogeneous linear equations, it follows that there exist a non-trivial 

solution for the system  

1 1 1 2 1 2 1

1 2 1 2 2 2 2

( ) ( ) ... ( ) 0

( ) ( ) ... ( ) 0

.                            .                        .

.                            .                        .

.                         

n n

n n

a x a x a x

a x a x a x

  

  

   

   

1 1 2 2

   .                        .

( ) ( ) ... ( ) 0,n n n n na x a x a x     

 

in K, say, 1 2, ,..., n   . Since trace is a non-zero homomorphism, so there exists an element α of K such 

that SK/F(α) is non-zero. If αk is non-zero, we multiply the above system of equations by ααk
-1 to obtain:  

1 1 1 2 1 2 1

1 2 1 2 2 2 2

( ) ( ) ... ( ) 0

( ) ( ) ... ( ) 0

.                            .                        .

.                            .                        .

.                         

n n

n n

x x x

x x x

     

     

   

   

1 1 2 2

   .                        .

( ) ( ) ... ( ) 0,n n n n nx x x        

 

where 1

j k j    (j = 1, …, n). Applying the F-automorphisms 1 1 1

1 2, ,..., n      to the above equations 

respectively, to obtain 

1 1 1

1 1 1 1 2 2 1

1 1 1

2 1 1 2 2 2 2

( ) ( ) ... ( ) 0

( ) ( ) ... ( ) 0

.                            .                        .

.                            .                        .

.             

n n

n n

x x x

x x x

     

     

  

  

   

   

1 1 1

1 1 2 2

               .                        .

( ) ( ) ... ( ) 0,n n n n nx x x          

 

Adding all these equations, as i  runs through the group G, so does 1

i
 . we deduce that  

SK/F(β1)x1 + … +  SK/F(βn)xn = 0. 
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As SK/F(βk) is a member of F and 1

k k k     , so SK/F(βk) = SK/F(α) is non zero, hence the set 

 1 2, ,..., nx x x  is linearly dependent over F and so it does not form a basis, a contradiction to the 

assumption. Hence the result follows. 

3.3.2. Corollary. The collection 1 2( ), ( ),..., ( )nx x x   , images of an element x under the automorphisms 

in the Galois group  1 2( , ) , ,..., nG K F    , form a normal basis if and only if the matrix  ( )i j x   is 

non-singular. 

Next result proves that every separable normal extension of finite degree has a normal basis. However, 

we will prove the result for an infinite field first. 

Before starting the main result we are defining some terms: 

1. If K is any field, then Pn(K) represents the collection of all polynomials in n indeterminates with 

scalars from the field K. 

2. If K is any field and f(x) is a polynomial over F, for K  , we define ( ) ( )f f  . Further, if 

( )nf P F , means it is a polynomial in n inderminates, say 1 2, ,..., nx x x , then for any n-tuple 

 1 2, ,..., n     we can obtain ( )f  by replacing ix  with i  for 1 i n  . 

3.3.3. Theorem. Let K be some extension of an infinite subfield F and f be a non-zero polynomial in 

Pn(K). Then there are infinitely many ordered n-tuples  1 2, ,..., n     of elements of F such that 

( ) 0f  . 

Proof. Mathematical induction on n is applied to obtain the required result. 

For n = 1, let f(x) be a polynomial of degree d in P(K) = K[x]. Then f can have at most d roots in F (as 

obtained earlier in Section - I), and so there are infinitely many elements in F which does not satisfy 

f(x), that is, ( ) 0f    or ( ) 0f   for infinitely many   in F. 

Now assume that result holds for n = k, that is, if g is any polynomial in Pk(K) then there are infinitely 

many ordered k-tuples  1 2, ,..., k     of elements of F such that ( ) 0g  . 

Consider n = k+1, and let f be any non-zero polynomial in Pk+1(K) = P(Pk(K)), so we may express f in 

the form 

2

0 1 1 2 1 1... t

k k t kf g g x g x g x       , 

where 0 1 2, , ,..., tg g g g  are polynomials in Pk(K). Since f is a non-zero polynomial, at least one of the 

polynomials 0 1 2, , ,..., tg g g g  must be non-zero, say, ig . According to the induction hypothesis, there are 

infinitely many ordered k-tuples  1 2, ,..., k     of elements of F such that ( ) 0ig  . For each of 

these k-tuples  1 2, ,..., k    , the polynomial 

           2

0 1 1 2 1 1( ) ( ) ( ) ... ( ) t

k k t kf g g x g x g x                
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is a non-zero polynomial in P(K). Now following the similar lines as for n = 1, we conclude that there 

are infinitely many elements   of F such that ( ) 0f   . But if we set  1 2, ,..., ,k      it is clear 

that ( ) ( )f f    . 

Hence we see that the result is true for n = k+1. This completes the induction. 

3.3.4. Theorem. Let K be a finite separable normal extension of degree n over an infinite subfield F. 

 Let  1 2( , ) , ,..., nG K F     be the Galois group of K over F. If f  is a polynomial in Pn(K)  

with indeterminates 1 2, ,..., nX X X  such that, for every K  , 
( ) ( ) 0,f   where,

1 2( ) ( ( ), ( ),..., ( ))n         then f is the zero polynomial. 

Proof. Let  1 2, ,..., nx x x  be a basis for K over F. Then, due to Theorem 1, the matrix  ( )i jx  is non-

singular, and so is invertible with inverse, say,  ijp . Thus,   ( )i j ij nx p I   and so the (i , r)th entry of 

this matrix are 

1

1,    if i r
( )

0,    if i r

n

i j jr

j

x p



 


  

Let 
1 1 2 2

1

( ) ( ) ( ) ... ( )
n

i i j j i i i n n

j

x X x X x X x X    


      and  1 2, ,..., n    . Then, define the 

polynomial g in Pn(K) as  

1 2( , ,..., ) ( )ng X X X f . 

If  1 2, ,..., na a a a  is any ordered n-tuple of elements of F and 1 1 2 2 ... n na x a x a x     , then 

 

1 2 1 2

1 1 1

1 2

1 1 1

1 2

( ) ( , ,..., ) ( ) , ( ) ,..., ( )

( ), ( ),..., ( )

( ), ( ),..., ( )

0

n n n

a n j j j j n j j

j j j

n n n

j j j j n j j

j j j

n

g g a a a f x a x a x a

f a x a x a x

f

   

  

     

  

  

 
   

 

 
  

 





  

    

by given hypothesis. 

Now, if  1 2, ,..., nb b b b  be any ordered n-tuple of elements of F and 
1

n

j jr r

r

c p b


 , for 1 j n  . Then,  

 
1 1 1 1 1

( ) ( ) ( )
n n n n n

i j j i j jr r i j jr r i

j j r r j

x c x p b x p b b  
    

     , 

since 
1

1,    if i r
( )

0,    if i r

n

i j jr

j

x p



 


 . 
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Hence if  1 2, ,..., nc c c c , then 

 

1 2 1 2

1 1 1

1 2

( ) ( , ,..., ) ( ) , ( ) ,..., ( )

, ,...,

( )

n n n

c n j j j j n j j

j j j

n

b

g g c c c f x c x c x c

f b b b

f

   



  

 
   

 





  

 

However, ( ) 0c g   as obtained above, so ( ) 0b f   for any ordered n-tuple  1 2, ,..., nb b b b  of 

elements of F. Thus f is the zero polynomial, otherwise it will contradict Theorem 2. 

Remark. Let  1 2( , ) , ,..., nG K F     be a Galois group of K over F. If , ( , )i j G K F   , then 

( , )i j G K F    and so it must be an element of  1 2, ,..., n   . We consider 
( , )i j p i j   . Since 

 1 2( , ) , ,..., nG K F     is a group so due to left and right cancellation laws, 
i j i k     if and only if  

j = k, that is, 
( , ) ( , )p i j p i k   if and only if j = k, it follows that p(i, j) = p(i, k) if and only if j = k. 

Similarly, p(h, j) = p(i, j) if and only if h = i. 

We can now prove the Normal Basis Theorem for the case of infinite fields. 

3.3.5. Theorem. Let K be a finite separable normal extension of on infinite subfield F. Then there exists 

a normal basis for K over F. 

Proof. Consider now the polynomial f in Pn(K) obtained by 

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )

( ,1) ( ,2) ( , )

    

   ...
det

          

   

p p p n

p p p n

p n p n p n n

X X X

X X X
f

X X X

 
 
 

  
 
 
 

. 

Then as discussed in the remark above Xi occurs exactly once in each row and exactly once in each 

column of this matrix. If we replace ordered n-tuple 1 2( , ,..., )nX X X  by (1, 0, …, 0) in f, we obtain the 

determinant of a matrix in which the identity element 1 of F occurs exactly once in each row and exactly 

once in each column; the determinant of such matrix is either 1 or –1. Hence f is a non-zero polynomial. 

Due to Theorem 3, there is at least one element x of K such that 

 1 2( ), ( ),..., ( ) 0nf x x x    . 

By the definition of the polynomial f, this in term becomes 

 det ( ) 0i j x   . 

Hence, by corollary to Theorem 1,  1 2( ), ( ),..., ( )nx x x    is a normal basis for K over F. 
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3.4. Cyclotomic Extensions. Let 𝐹 be a field, for every positive integer 𝑚 define  

mk 1mX   

in 𝐹[𝑋]. If an extension K of 𝐹, is a splitting field of one of the polynomials 𝑘𝑚, then it is called a 

cyclotomic extension. 

3.4.1. Theorem. Let F be a field with non-zero characteristic, then the cyclotomic extension is both 

separable and normal. 

Proof. Suppose that 𝐹 has non-zero characteristic 𝑝, then every positive integer 𝑚 can be expressed in 

the form 𝑚 = 𝑝𝑟𝑚1, where 𝑟 ≥ 0 and 𝑝 does not divide 𝑚1. Then we have 

 1

1mk 1 1 ( )
r

rp
mm p

mX X k     , and so roots of  𝑘𝑚 are similar to those 𝑘𝑚1
. Thus splitting field of 

𝑘𝑚1
 over 𝐹 is also a splitting field for 𝑘𝑚 over 𝐹. Thus in this case we consider only those polynomials 

𝑘𝑚 for which 𝑚 is not divisible by the characteristic. Then, 

1mdk

dX

mmX   

The only non-zero factor of this polynomial are powers of 𝑋, none of which is a factor of 𝑘𝑚. Thus, no 

roots of 𝑘𝑚 are repeated and so 𝑘𝑚 is a separable polynomial. Also being a splitting field of some non-

zero polynomial this extension is normal too. Hence all cyclotomic extensions of 𝐹 are separable and 

normal. 

Remark. Let 𝐾𝑚 be a splitting field for 𝑘𝑚 over 𝐹, where 𝑚 is not divisible by the characteristic of 𝐹. 

Also assume that  𝐹 is contained in 𝐾𝑚. As the 𝑚 roots of 𝑘𝑚 in 𝐾𝑚 are all distinct, we call them the 

𝑚𝑡ℎ roots of unity in 𝐾𝑚 and denote them by 𝜉1, … , 𝜉𝑚. Now if 𝜉𝑖 and 𝜉𝑗 are 𝑚𝑡ℎ roots of unity in 𝐾𝑚, 

we have (𝜉𝑖𝜉𝑗)𝑚 =  𝜉𝑖
𝑚𝜉𝑗

𝑚 = 1 so 𝜉𝑖𝜉𝑗 is also 𝑚𝑡ℎ roots of unity, therefore the collection of 𝑚𝑡ℎ roots 

of unity form a subgroup of the multiplicative group on non-zero elements of 𝐾𝑚. Further, being a finite 

multiplicative subgroup of non-zero elements of a group this subgroup must be a cyclic group. Any 

generator of this group is called a primitive 𝑚𝑡ℎ root of unity in 𝐾𝑚. If 𝜉 is a primitive 𝑚𝑡ℎ root of unity, 

then 𝜉𝑟 is also a primitive 𝑚𝑡ℎ root of unity for each 𝑟, relatively prime to 𝑚. 

If 𝑚 is a prime number, then every 𝑚𝑡ℎ root of unity, except the identity element, is a primitive 𝑚𝑡ℎ root 

of unity. It is clear that any primitive 𝑚𝑡ℎ root of unity 𝜉 may be taken as a primitive element for 𝐾𝑚 

over 𝐹, that is to say, 𝐾𝑚 = 𝐹(𝜉). 

First we are to define the group 𝑹𝒎. 

The elements of 𝑹𝑚 are the residue classes modulo 𝑚 consisting of integers which are relatively prime 

to 𝑚, with the product of two relatively prime residue classes 𝐶1, 𝐶2 is defined to be the residue class 

containing 𝑛1𝑛2, where 𝑛1, 𝑛2 are members from 𝐶1, 𝐶2 respectively. The order of  𝑹𝑚 by ∅(𝑚). 

 

In the next theorem we will obtain the Galois group of a cyclotomic extension. 
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3.4.2. Theorem. Let F be a field, m a positive integer which is not divisible by the characteristic of F, if 

ch.F is non-zero. Let Km be a splitting field for km over F including F. Then the Galois group G(Km, F) 

is isomorphic to a subgroup of 𝐑m. 

Proof. Let 𝜉 be a primitive 𝑚𝑡ℎ root of unity in 𝐾𝑚. If 𝜏 is any element of 𝐺(𝐾𝑚, 𝐹), then 𝜏(𝜉) is also a 

primitive 𝑚𝑡ℎ root of unity. Hence 𝜏(𝜉) =  𝜉𝑛𝜏 , where g.c.d.( 𝑛𝜏, 𝑚) = 1. Define a mapping  : 𝐺 → 𝑹𝑚 

as follows: 

𝜃(𝜏) = the residue class of  𝑛𝜏 modulo 𝑚. 

If 𝜏 and 𝜌 are elements of 𝐺, then 

𝜉𝑛𝜏𝜌 = (𝜏𝜌)(𝜉) =  𝜏(𝜌(𝜉)) = 𝜏(𝜉𝑛𝜌) = (𝜏(𝜉))𝑛𝜌 = 𝜉𝑛𝜏𝑛𝜌 , 

so 𝑛𝜏𝜌 ≡ 𝑛𝜏𝑛𝜌(mod 𝑚), and therefore 𝜃(𝜏𝜌) = 𝜃(𝜏)𝜃(𝜌). Hence 𝜃 is a homomorphism. 

Further, 𝜃 is one-to-one, as if 𝜏 ≠ 𝜌 then 𝜏(𝜉) ≠ 𝜏(𝜉), that is, 𝜉𝑛𝜏 ≠ 𝜉𝑛𝜌 and hence 𝑛𝜏 and 𝑛𝜌 are 

members of different residue classes modulo 𝑚. 

Hence, 𝐺 is isomorphic to the subgroup 𝜃(𝐺) of 𝑹𝑚. 

3.5. Cyclotomic Polynomial. Let 𝐹 be an arbitrary field and 𝐾𝑚 a splitting field for  𝑘𝑚 over 𝐹 

containing 𝐹, we assume that 𝑚 is not divisible by the characteristic of 𝐹 if ch.F is non-zero. If 𝑑/𝑚, the 

polynomial 𝑘𝑑 = 𝑋𝑑 − 1 divides 𝑘𝑚 = 𝑋𝑚 − 1 and hence roots of 𝑘𝑑 are included among the 𝑚𝑡ℎ roots 

of unity in 𝐾𝑚, that is, there  are 𝑑 distinct 𝑑𝑡ℎ roots of unity among the 𝑚𝑡ℎ roots of unity and, in 

particular, ɸ(𝑑) primitive 𝑑𝑡ℎ roots of unity. Thus, for each divisor 𝑑 of 𝑚 we may define the 

polynomial ɸ
𝑑

 in 𝑃(𝐾𝑚) as 

ɸ
𝑑

= ∏(𝑋 − 𝜉𝑑), 

where the product is taken over all the primitive 𝑑𝑡ℎ roots of unity 𝜉𝑑 in 𝐾𝑚, then 𝑑𝑒𝑔ɸ
𝑑

=  ∅(𝑑). Since 

every 𝑚𝑡ℎ root of unity 𝜉 is a primitive 𝑑𝑡ℎ root of unity for some 𝑑/𝑚, it follows that 

𝑘𝑚 = 𝑋𝑚 − 1 = ∏ ɸ
𝑑𝑑/𝑚 . 

The polynomial ɸ
𝑚

 is called the 𝑚𝑡ℎ cyclotomic polynomial. 

3.5.1. Theorem. For every positive integer m, the coefficients of the mth cyclotomic polynomial belong 

to the prime subfield of F. In case if ch.F = 0, and the prime field is 𝐐, then these coefficients are 

integers. 

Proof.  Mathematical induction on 𝑚 is sued to obtain the result. 

For m = 1, result is obvious as ɸ
1

= 𝑋 − 1 has coefficients in the prime field. 

Suppose now that the result holds for all factors 𝑑 of 𝑚  such that 𝑑 < 𝑚. 

Then we have 

𝑋𝑚 − 1 = ɸ
𝑚

∏ ɸ
𝑑1≤𝑑<𝑚

𝑑/𝑚
. 
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By hypothesis, all the factors in the product have coefficients in the prime field; 𝑋𝑚 − 1 has coefficients 

in the prime field. Hence so does ɸ
𝑚

. In the case, when the prime field is 𝑸,  every factor in the product 

has integer coefficients with leading coefficient 1, when we divide a polynomial with integer 

coefficients by a polynomial with integer coefficients and leading coefficient 1 the quotient has integer 

coefficients. Thus ɸ
𝑚

 have integer coefficients. 

3.5.2. Example. Compute ɸ
20

. 

Since the divisors of 20 are 1, 2, 4, 5, 10 and 20, so we have 

𝑋20 − 1 = ɸ
1
ɸ

2
ɸ

4
ɸ

5
ɸ

10
ɸ

20.
 

Similarly, the divisors of 10 are 1, 2, 5 and 10, so we have 

𝑋10 − 1 = ɸ
1
ɸ

2
ɸ

5
ɸ

10
. 

Hence     𝑋10 + 1 = ɸ
4
ɸ

20.
 

Now we need to calculate ɸ
4
. For this, the divisors of 4 are 1, 2 and 4, so we have 

𝑋4 − 1 = ɸ
1
ɸ

2
ɸ

4
. 

Also,     𝑋2 − 1 = ɸ
1
ɸ

2
. 

So, we have    ɸ
4

= 𝑋2 + 1. 

Hence     ɸ
20

=
𝑋10+1

𝑋2+1
. 

3.6. Cyclotomic Extensions of the Rational Number Field. 

In this section, we will consider that the field F = Q, field of rational numbers, and prove that the Galois 

group ( , )mG K Q  is isomorphic to the multiplicative group Rm of residue classes modulo m relatively 

prime to m. 

3.6.1. Content of a Polynomial. Let 2

0 1 2( ) ... [ ]n

nf x x x x Z x          be a polynomial over Z, 

then the content ‘t’ of f is defined as 0 1 2. . .( , , ,..., )nt g c d     . 

3.6.2. Primitive Polynomial. A polynomial ( ) [ ]f x Z x  is said to be primitive polynomial if its content 

is 1. 

It should be noted that if ( ) [ ]f x Z x , we may write 1( ) ( )f x cf x , where c is the content of ( )f x  and 

1( )f x  is a primitive polynomial in [ ]Z x . 

3.6.3. Theorem. If a polynomial ( ) [ ]f x Z x  can be expressed as a product of two polynomials over Q , 

the rational field, then it can be expressed as a product of two polynomials over Z . 

Proof. Let ( ) [ ]f x Z x  and 1 2( ), ( ) [ ]g x g x Q x  such that 1 2( ) ( ). ( )f x g x g x . Let d1, d2 be the least 

common multiples of the denominators of the coefficients of 1 2( ), ( )g x g x  respectively. Then 
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1 1 1 2 2 2( ) ( ) and ( ) ( )p x d g x p x d g x   are polynomials in [ ]Z x . Let t1 and t2 be the content of 

1 2( ) and ( )p x p x  and write 1 1 1 2 2 2( ) ( ) and ( ) ( )p x t k x p x t k x  , where 1 2( ) and ( )k x k x  are primitive 

polynomials in [ ]Z x . Then we have 

1 2 1 2 1 2( ) ( ) ( )d d f x t t k x k x . 

We claim that 1 2( ) ( )k x k x  is a primitive polynomial. 

Let p be any prime number. Since 2

1 0 1 2( ) ...k x a a x a x     and 2

2 0 1 2( ) ...k x b b x b x     are 

primitive polynomials so each polynomial has at least one coefficient which is not divisible by p. Let ia  

and 
jb  be the first coefficients of 1 2( ) and ( )k x k x  respectively, which are not divisible by p. Then the 

coefficients of Xi+j in 1 2( ). ( )k x k x  is  

.u v

u v i j

a b
  

 . 

If v ≠ i, u ≠ j and u + v = i + j, then either u ˂ i or v ˂ j and hence either au is divisible by p or bv is 

divisible by p. Thus, all the terms, except for aibj, in the summation are divisible by p and so the sum is 

not divisible by p. It follows that for every prime number p, 1 2( ). ( )k x k x  has at least one coefficient 

which is not divisible p, which implies that the g.c.d. of the coefficients of 1 2( ). ( )k x k x  is 1. Hence 

1 2( ). ( )k x k x  is a primitive polynomial. 

Thus, t1t2 is the content of (d1d2)f(x). However, d1d2 is a divisor of the content of (d1d2)f(x). Hence 1 2

1 2

t t

d d
 

is an integer, say, l. Then 1 2( ) ( ( )) ( )f x lk x k x  is a factorisation of ( )f x  in [ ]Z x . 

3.6.4. Corollary. If ( ) [ ]f x Q x  is a monic polynomial dividing 1mx  , then ( ) [ ]f x Z x . 

3.6.5. Definition. If 2

0 1 2( ) ... [ ]n

nf x x x x F x          and k is any positive integer, then we 

denote by ( )kf x  the polynomial obtained as 

2

0 1 2( ) ... [ ]k k nk

k nf x x x x F x          

3.6.6. Theorem. Let ( ) [ ]f x Z x  divides 1mx   and k is any positive integer such that g.c.d.(k,m)=1, 

then ( )f x  divides ( )kf x  in [ ]Z x . 

Now we will prove that the Galois group ( , )mG K Q  is isomorphic to the multiplicative group Rm of 

residue classes modulo m relatively prime to m. 

3.6.7. Theorem. Let Km  be a splitting field of km over Q. Then ( , )m mG K Q R . 

Proof. Let ζ be a primitive mth root of unity in Km. Define a monomorphism  : 𝐺(𝐾𝑚, 𝑄) → 𝑅𝑚  as 

follows: 

𝜃(𝜏) = the residue class of  𝑛𝜏 modulo 𝑚, 

for each automorphism ԏ in 𝐺(𝐾𝑚, 𝑄), we defined ԏ(ζ) = ζn
ԏ where nԏ is relatively prime to m. 

This mapping is onto as well. Hence the required result holds. 
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3.6.8. Corollary. The cyclotomic polynomials ɸ
𝑚

 are all irreducible in Q[x]. 

3.7. Cyclic Extension. Let F  be a field. A finite separable normal extension K of F  is said to be cyclic 

extension of F if G(K,F) is cyclic. We are considering that F K . 

3.7.1. Theorem. Let K  be a cyclic extension of a subfield F  and ( , )G K F   . If x K , then 

/ ( ) 1K FN x   if and only if there is an element y K  such that ,
( )

y
x

y
  and / ( ) 0K FS x   if and only if 

there is an element z  in K  such that ( ).x z z    

Proof. Since K is a finite extension of F so let [ : ] ;K F n  then | G(K,F)|=n and so ,n I   the identity 

automorphism. 

First, suppose that 
( )

y
x

y
 . Then 

2 1
2 1

/ 2 3

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 1.

( ) ( ) ( ) ( )

n
n

K F n

y y y y
N x I x x x x

x y y y

  
  

   


    

Similarly, if ( ),x z z   we have 

2 1

/

2 2 3 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

n

K F

n n

S x I x x x x

z z z z z z z z

  

      





    

         
 

Conversely, suppose that 

2 1 2 1

/ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1.n n

K FN x I x x x x x x x x          

Then x is clearly non-zero and so is invertible with 
1 2 1( ) ( ) ( ).nx x x x     

Next, since the set of automorphisms 
2 1{ , , , , }nI      is linearly independent over K , the mapping  

2 2 1( ) ( ) ( )n nx x x x x x            

is non-zero mapping of K into itself. That is to say, there is an element t of K such that 

2 2 1( ) ( ) ( ) ( ) ( ) ( )n ny t x t x x t x x x t            

is non-zero. Applying the automorphism  , we obtain 

2 2 3 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .ny t x t x x t x x x t x y                 

Thus / ( ).x y y  Similarly suppose 

                                        2 1

/ ( ) ( ) ( ) ( ) 0.n

K FS x x x x x           

Then of course 
2 1( ) ( ) ( ) .nx x x x         
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Since /K FS  is not the zero mapping; so let t  be an element of K  such that / ( )K FS t  is non-zero, and 

consider the element   

                       2 2 1

1 ( ) ( ( )) ( ) ( ( ) ( )) ( ).n nz x t x x t x x x t                 

Applying the automorphism  we obtain 

            2 2 3 2 1

1( ) ( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ) ( ))nz x t x x t x x x t                  

                    2 2 3( ) ( ) ( ( ) ( )) ( ) .x t x x t xt          

Hence we have 

                      2 1

1 1 /( ) ( ( ) ( ) ( )) ( ).n

K Fz z x t t t t xS t               

Since / ( )K FS t  lies in F and hence is left fixed by ,  it follows that if we write 1 // ( ),K Fz z S t  then 

( ).x z z    

3.7.2. Definition. Let a be any element of a division ring D. Then the normaliser of a in D is the set 

N(a) consisting of elements of D which commute with a: 

so n belongs to N(a) if and only if an = na. 

3.7.3. Exercise. Let D be a division ring. Then the centre Z of D is a subfield of D and the normalizer of 

each element of D is a division subring of D including Z. 

3.7.4. Wedderburn theorem. Every finite division ring is a field. 

Proof. Let D be a finite division ring, with centre Z. Suppose Z has q elements and D has qn elements.  

We claim that D = Z and n = 1. 

The multiplicative group D* can be expressed as a union of finitely many conjugate classes, say 

C1,…,Ck, w.r.t. the subgroup Z*. Then, |Ci| = 
1

1i

n

t

q

q




 where ti < n . Thus, 

1

1
1 1

1i

nk
n

t
i

q
q q

q


   


 . 

Now the nth cyclotomic polynomial Φn in P(Q) is a factor of both the polynomials Xn - 1 and 
1

1i

n

t

X

X




. 

Let a = Φn(q). Then a divides qn - 1 and 
1

1i

n

t

q

q




. Hence a divides q – 1. 

If n > 1, then for every primitive nth root of unity ζ in the field of complex numbers C we have 

|q - ζ| > q – 1. Hence |a| = ∏| q - ζ |> q – 1, and hence a cannot be a factor of q – 1. 

It follows that there is no conjugate class Ci containing more than one element. Hence n = 1 and D = Z, 

as required. 

3.7.5. Corollary. If F is a finite set, then it is a division ring if and only if it is a field. 
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3.8. Check Your Progress. 

1. Design fields of order 27, 16, 25, 49. 

2. Compute ɸ
30

. 

3.9.  Summary. 

In this chapter, we have derived results related to cyclotomic extensions and cyclic extensions. Also It 

was proved that a finite division ring is a field, therefore we can say that a division ring which is not a 

field is always infinite.  
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Ruler and Compass Construction 

Structure 

4.1. Introduction. 

4.2. Ruler-and-compasses constructions. 

4.3. Solution by radicals. 

4.4. Solvable Group. 

4.5. Solution of Polynomial Equations by Radicals. 

4.6. Check Your Progress. 

4.7. Summary. 

4.1. Introduction. In this chapter, possibility to construct some geometrical figures using ruler and 

compass are discussed by the help of some algebraic structures. Also the solvability by radicals of 

generic polynomial is discussed  

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Normal Extensions. 

(ii) Fixed Fields, Galios Groups 

(iii) Norms and Traces. 

4.1.2. Keywords. Normal Extensions, Galois Group, Fixed Fields. 

4.2. Ruler-and-compasses constructions. 

Three main problem of Geometry are: 
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Using the traditional geometrical instruments ruler and compasses can we 

1. Trisect an arbitrary given angle. 

2. Construct a cube having volume double to that of a given cube. 

3. Construct a square with area equal to that of a given circle. 

We shall show that these three problems are insolvable. 

Consider the Euclidean plane and two straight lines intersecting at right angles in this plane meeting at a 

point O . Assume I  is an arbitrary point on one of those lines. Then, by taking O  as origin and I  to be 

the point (1,0) , we can set up a Cartesian coordinate system in the plane. Let B  be a collection of 

points in this plane, including O  and I . With the points in B we can start our construction and so these 

points will be called basic points. 

By ruler-and-compasses construction based on B  we mean a finite sequence of operations of the 

following types:  

(1) Drawing a straight line through two points which are either basic points or points previously 

constructed in the sequence of operations. 

(2) Drawing a circle with center at a basic point or a point previously constructed with radius equal 

to the distance between two points, each of which is either a basic point or a point previously 

constructed. 

(3) Obtaining points of intersection of any two obtained in (1) and (2), which are (a) points of 

straight lines, (b) pairs of circles, (c) straight lines and circles. 

Any point P  which is obtained by (3) based on B  is said to be constructible from .B  If B  consists of 

the points O  and I   and no others, we simply say that B  is constructible. 

Let P  be any point of the plane with coordinates ( , )   determined by O  and .I  The subfield of R 

obtained by adjoining   and   to B will be denoted by B( P ). 

4.2.1. Theorem. If the point P  is constructible from ,B  then the [B( P ) : B] = 2n for some non-

negative integer n. 

Proof.  To obtain P from B in ruler-and-compasses construction let the sequence is 1 2, , , nP P P P  of 

operations of type (3). Suppose that 1P  is one of the basic points and the co-ordinates of ( 1, , )iP i n  

be ( , )i i  . 

Let K  = B( 1, , nP P ). We claim that [K : B] = 2n. Then the result follows directly as B( P ) is a subfield 

of K and hence [B( P ) : B] is a factor of [K : B]. 

We prove by induction on .n   

If 1n  , then K   B( 1P ) = B, thus 
0[ : ] 1 2 .K  B    

Now assume result holds for n = k-1, that is, if L is the subfield of R  obtained by adjoining to B  the 

coordinates of 1 1, , kP P   then [ : ] 2sL B  for some s. 
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If iP  and 
jP  are distinct points (1 , 1)i j k    then the equation of straight line 

ij  joining them is  

( )( ) ( )( ).j i i j i iy x           

Similarly, if rP  and sP  are distinct points and tP  is any point (1 , , 1),r s t k    then the equation of 

circle ,t

rs   with center tP  and radius equal to the distance between rP  and sP  is  

2 2 2 2( ) ( ) ( ) ( ) .t t r s r sx y                        (1) 

Let T = B ( 1, , kP P ) =L( kP ).  If kP   is obtained from 1 1, , kP P   by intersection of two lines like ,ij  

then its coordinates are obtained by solving two linear equations with coefficients in L and so its 

coordinates lie in L Thus, T = L and so [ : ] [ : ] 2sL T B B . 

Similarly, in other cases [ : ] 2tT B  for some t (Left as an exercise to the reader). 

This completes the Proof. 

4.2.2. Theorem. Let P  be a point in the plane and ( )PB  has a sequence of subfields, 

1 1 0( ) , , , ,n nP K K K K B B  such that iK  includes 1iK   and 1[ : ] 2( 1, , ),i iK K i n    then P  is 

constructible from B. 

Proof.  We proceed by induction on .n   

If 0n   then ( ) .P B B   Hence, P  is constructible from B. Now, let result holds for n = k-1. 

Assume that K  has a sequence of subfields 1 1 0, , , ,k kK K K K K  B . Since 1[ : ] 2,k kK K    it 

follows that kK  is a normal extension of 1kK  . If kK   such that 1kK  , then 1( )k kK K  . If 

minimum polynomial of   over 1kK   is 2 2 21 1
( ) ( )

2 4
X aX b X a b a      . Considering

1

2
a   , 

we have 2 21
0;

4
a b     thus 2  is a positive element of 1kK    and clearly 1 1( ) ( )k k kK K K    .  

Now, since 
2( , 0)  has coordinates in 1kK  , it is constructible from B, by the induction hypothesis. 

Hence every point with coordinates in kK  is constructible from B. This completes the induction. 

4.2.3. Corollary.   Let P  be a point in the plane. If the field ( )PB  is a normal extension of  B  such that 

[ ( ) : ]PB B  is a power of 2 , then the point P is constructible from B. 

Proof.  Let G  be the Galois group of ( )PB  over B , Then |G| = [ ( )PB  : B ] = 2 .s  Then, G  has a 

sequence of subgroups, 0 1 2, , ,..., { }nG A A A A e   each of index 2  in the preceding. Thus, ( )PB  has a 

sequence of subfields 0 1 2( ) , , ,..., nP K K K K B B  each of degree 2 over the next. Hence P is 

constructible from B. 
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4.3. Solution by radicals. 

Let F be a field of characteristic zero and E is an extension of F, then E is said to be an extension of F 

by radicals if there exists a sequence of subfields F = E0 , E1 , … , Er-1, Er = E  such that 

Ei+1 = Ei(αi), 

for i = 0 , …, r -1, where αi is a root of an irreducible polynomial in P(Ei) of the form Xni - ai. A 

polynomial f(x) in F[x] is said to be solvable by radicals if the splitting field of f(x) over F is contained 

in an extension of F by radicals.  

4.3.1. Theorem. Let F be a field of characteristic zero, K a normal extension of F with G(K,F) is 

abelian. If [K : F] = n and the polynomial kn = Xn - 1 splits completely in F[X], then K is an extension of 

F by radicals. 

Proof. Let G = G(K,F). Then, G may be expressed as a direct product of cyclic groups, say 

G = C1 x … x  Cr. 

Define, Gi = C1 x C2 x … x Cr - i, for i = 0, …, r – 1,  and Gr =< I >, where I is the identity element of G. 

Then Gi+1 is a normal subgroup of Gi and  

1

i
i

i

G
C

G 

   for i = 0, …, r - 1. 

Let Ei be the subfield of K left fixed by Gi for i = 0, …, r. Then, Ei + 1 is a normal extension of Ei with 

cyclic Galois group, isomorphic to Cr-1 for i = 0, …, r-1. Since the degree ni of Ei + 1 over Ei is a factor of 

n and kn splits completely in F[X] and hence in Ei[X], it follows that kn splits completely in Ei[X]. So 

Ei+1 = Ei(αi) where αi is a root of an irreducible polynomial in Ei[X] of the form Xni - ai for i = 0, …, r -1. 

Thus K is an extension of F by radicals, as asserted. 

4.3.2. Theorem. Let F be a field of characteristic zero. For every positive integer n, the polynomial 

kn = Xn – 1 in F[X] is solvable by radicals. 

Proof. We prove the result by induction on n. 

If n = 1, then the splitting field for kn over F is F itself, which is an extension of itself by radicals. 

Now, suppose that every polynomial kl with l < m is solvable by radicals. 

Let Km be a splitting field of km over F containing F. If [Km : F] = r, then r ≤ φ(m) < m.  According to 

induction hypothesis, kr is solvable by radicals and so there is a splitting field Kr of kr over F which is 

contained in an extension E of F by radicals. Without loss of generality assume that E and Km are 

contained in the same algebraic closure C of F, then consider L = E(Km)    C. 

Then, L is a separable normal extension of E and the Galois group G(L, E) of L over E is isomorphic to 

a subgroup of the Galois group G(Km, F) of Km over F. Hence G(L, E) is Abelian. It follows that  

s = [L : E] is a factor of r = [Km : F]. Since kr splits completely in E[X], so too does ks. Thus L is an 

extension of E by radicals. Since E is also an extension of F by radicals it follows that L is also an 

extension of F by radicals and hence km is solvable by radicals. 

This completes the induction. 
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Before proceeding further, we discuss some results of solvable groups. 

4.4. Solvable Group.  A group G is said to be solvable if there exists a sequence of subgroups 

   G  = 0G    1G    2G    . . .   Gn   =  e   

such that (i) 1G i    G i    for  0   i   n – 1 

  (ii) 1G Gi i   is abelian  for  0   i   n – 1. 

Results. 

1. Every subgroup  of a solvable group is solvable. 

2. Every quotient group of a solvable group is solvable. 

3. Let G be a group and H be a normal subgroup of G. Then if H and G H  both are solvable, then 

prove that G is also a solvable group. 

4. A finite  p-group is solvable. 

5. Direct product of two solvable groups is solvable . 

6. Let  H  and  K  are solvable subgroups of  G  and  H   G then  HK  is also solvable. 

7. Show  that every group of order  pq  is solvable where  p  ,  q  are  prime numbers not  

necessarily distinct. 

8. Prove that every group of order  p2q , p and q are primes , is solvable . 

9. Sn  is solvable  for  n4. 

10. Sn  is not solvable  for  n > 4.    

11. If a subgroup  G of   Sn   (n > 4)  contains every 3 – cycle and  H  be any  normal  subgroup of  G  

such that  G H   is abelian  then  H contains all the 3 – cycles. 

12. Homomorphic image of a solvable group is solvable. 

13. A finite group  G  is solvable iff there exist a sequence of subgroups 

G   =   G0     G1    . . .    Gn   =   < e > 

such that    Gi+1   Gi   and   i i+1G G    is cyclic  group of prime order for  0    i  n. 

14. A group  G  in is solvable iff  (n)G   =  < e >  for some  n   0. 

15. An is not solvable for  n5  and  hence  Sn  is also not solvable for  n5. 

We now state a criterion for a polynomial to be solvable by radicals. 

4.4.1. Exercise. Let F be a field of characteristic zero. A polynomial f(x) in F[x] has splitting field over 

F with a solvable Galois group iff f(x) is solvable by radicals. 

4.5. Solution of Polynomial Equations by Radicals. 

An extension field K of F is called a radical extension of F if there exist elements 1 2, ,..., m K    such 

that 

1. 1 2( , ,..., )mK F     

2. 1

1 1 2 1 1 2 and ( , ,..., ) for 1,2,...,  and integers , ,...,inn

i i mF F i m n n n         
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For ( ) [ ]f x F x  the polynomial equation f(x) = 0 is said to be solvable by radicals if there exists a 

radical extension K of F that contains all roots of f(x). 

If now 1{ , , }nx x  is asubset of a field E  algebraically independent over the subfield F  of ,E the 

polynomial  

1 2

1 2 ( 1)n n n n

n ng X x X x X x         

in ( ( ))P F x  is called a generic polynomial of degree n  over .F  So a generic polynomial over F  is one 

which has no polynomial relations with coefficients in F  connecting its coefficients 

4.5.1. Theorem.  Let 1

1 ( 1)n n n

n ng X x X x      be a generic polynomial of degree n  over a field 

F  of characteristic zero. Then the Galois group of any splitting field of ng  over 1( , , ) ( )nF x x F x  is 

isomorphic to the symmetric group on n  digits. (Left as an exercise for students) 

4.5.2. Theorem. The generic polynomial of degree 5n   is not solvable by radicals. 

Proof. Since the Galois group of any splitting field of ng  over 1( , , ) ( )nF x x F x  is isomorphic to the 

symmetric group Sn,. But Sn is not solvable group when 5n  . Hence f(x) is not solvable by radicals 

over 1( , , ) ( )nF x x F x  when 5n  . 

4.6. Check Your Progress. 

1. Design fields of order 27, 16, 25, 49. 

2. Compute ɸ
30

. 

4.7. Summary. 

Constructing a cube having volume double to that of a given cube is equivalent to the construction from 

the basic points O  and I  of the point ( ,0),  where   is the real number such that 3 2.   Since the 

polynomial 3 2X   is irreducible in ( )P Q , the field ( )Q  has degree 3 over Q  and hence, since 3 is 

not a power of 2, the point ( ,0)  is not constructible from O  and .I  Constructing a square with area 

equal to that of a given circle is equivalent to the construction of the point ( ,0).  However,  is not 

algebraic over the field of rational numbers. Hence ( ( ) : )Q Q  is infinite and hence cannot a power of 2. 
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